CLASS TEST

S.No. : 02 LS1_EC_B_140519

Networks Theory

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

ELECTRONICS ENGINEERING

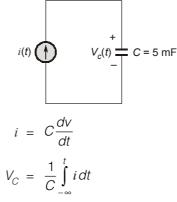
Networks Theory

Date of Test : 14/05/2019

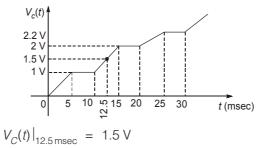
Answer Key									
1.	(a)	7.	(c)	13.	(a)	19.	(a)	25.	(d)
2.	(c)	8.	(a)	14.	(d)	20.	(b)	26.	(d)
3.	(b)	9.	(b)	15.	(d)	21.	(a)	27.	(a)
4.	(b)	10.	(a)	16.	(b)	22.	(a)	28.	(a)
5.	(a)	11.	(c)	17.	(a)	23.	(d)	29.	(b)
6.	(b)	12.	(a)	18.	(a)	24.	(b)	30.	(c)

DETAILED EXPLANATIONS

1. (a)

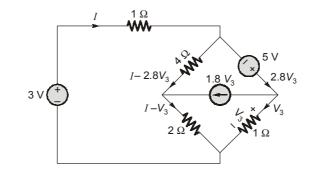


For 0 < t < 5; Unit step current is applied; voltage will increase linearly. For 5 < t < 10; No current is applied, hence open circuit, the capacitor will hold the charge. For 10 < t < 15; again capacitor's voltage increases linearly. From above analysis,



3. (b)

Showing the corresponding currents in all the branches, the circuit is shown as below



Now we apply KVL in outer loop

$$-3 + I(1) - 5 + V_3 = 0$$
$$I + V_3 = 8$$

0

А

Applying KVL in bridge,

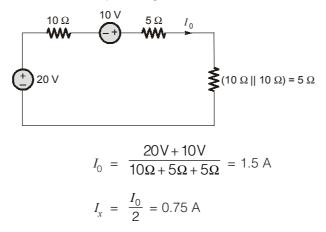
$$-5 + V_3 - 2 (I - V_3) - 4 (I - 2.8V_3) = 0$$

14.2 $V_3 - 6 I = 5$
 $I = 5.37 \text{ A}$
 $V_3 = 2.62 \text{ V}$

...(i)

4. (b)

Using the source transformation technique, the given circuit can be reduced as shown below:



5. (a)

Using the source transformation technique, the given circuit can be reduced as shown:

$$I_x = \frac{-1V + 5V - 2V}{1\Omega + 1\Omega} = \frac{2V}{2\Omega} = 1 \text{ A}$$

$$I_x = \frac{1 \Omega + 5V - 2V}{1\Omega + 1\Omega} = \frac{2V}{2\Omega} = 1 \text{ A}$$

6. (b)

Resonance frequency,
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{(10 \times 10^{-3})(10^{-6})}}$$
 Hz = $\frac{10}{2\pi}$ kHz = 1.6 kHz

7. (c)

Since total power absorbed or delivered in the circuit $\Rightarrow \qquad \Sigma P = 0;$ then $-30 \times 6 + 6 \times 12 + 3 V_0 + 28 + 28 \times 2 - 3 \times 10 = 0$ $72 + 84 + 3 V_0 = 210;$ or $3 V_0 = 54$ $\Rightarrow V_0 = 18 V$

$$I_{1} = \frac{2\Omega}{R_{T1}} = 2\Omega$$

$$I_{2} = \frac{2\Omega}{I_{2}} = \frac{2\Omega}{I_{2}} = \frac{2\Omega}{I_{2}} = \frac{1}{2}$$

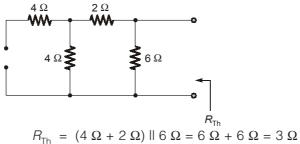
$$I_{2} = I_{1} \times \frac{6\Omega}{R_{T2} + 6\Omega} = \frac{I_{1}}{2} = 1A$$

$$V_{Th} = (4 \Omega) I_{2} - 2 V = 4 V - 2 V = 2 V$$

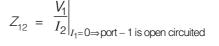
1Ω 1V

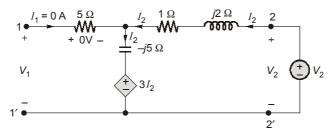
9. (b)

Maximum power will be transferred to R_L in the given circuit, when $R_L = R_{Th}$. To determine R_{Th} :



10. (a)





When port-1 is open circuited, i.e.
$$I_1 = 0$$
,

$$V_{1} = (-j5 \ \Omega)I_{2} + 3I_{2} = (3 - j5)I_{2}$$
$$Z_{12} = \frac{V_{1}}{I_{2}}\Big|_{I_{1}=0} = (3 - j5)\Omega$$

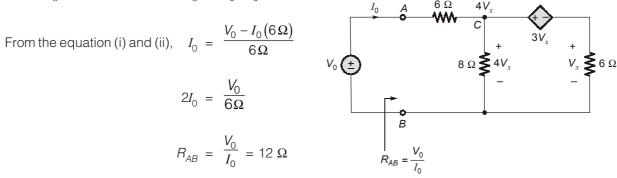
11. (c)

$$R_{AB} = \frac{V_0}{I_0}$$

By applying KCL at node C, we get,

$$I_0 = \frac{4V_x}{8\Omega} + \frac{V_x}{6\Omega} = \frac{4V_x}{6\Omega} \qquad \dots (i)$$

Also, $4V_x$ can be written as, $4V_x = V_0 - I_0$ (6 Ω)

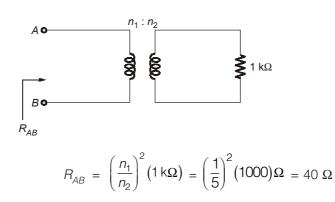


...(ii)

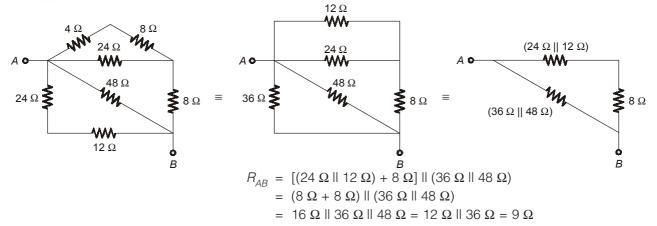
12 (a)

MADE EASY

t Institute for IES, GATE & PSUs



13. (a)



14. (d)

Let the current be shown in the figure

$$i = 0.6 V_0 + 12$$

 $i = i_1 + i_2$

Since branches *ab* and *ac* have idential resistance, Hence, $i_1 = i_2$

and

$$i_{1} = i_{2}$$

 $i = 12 + 0.6 V_{0} = 2i_{1} = 2i_{2}$
 $V_{0} = (i_{1} \times 2) V$
 $i = 2i_{1}$, we write
 $i_{1} = \frac{i}{2} = \frac{1}{2}(12 + 0.6V_{0})$
and
 $V_{0} = i_{1} \times 2 = i_{1} + 0.6 V_{0}$
 $V_{0} = i_{1} \times 2 = 12 + 0.6 V_{0}$
Equation resistance across *x*e node is:

$$R_{xe} = (5 || 5) + 4 + 1 = 7.5 \Omega$$
$$V_{xe} = 0.6 V_0 \times 7.5 + 12 \times 7.5$$
$$= 18 \times 7.5 + 12 \times 7.5$$
$$= 225 V$$

15. (d)

When,

$$I_{0} = \frac{I_{m}}{\sqrt{2}}$$

$$I_{m} = \frac{V_{0}}{\omega_{0}L}$$

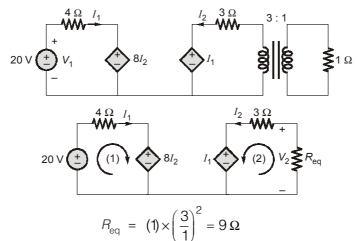
$$v(t) = -V_{0}\sin(\omega_{0}t) + 4V_{0}\sin(4\omega_{0}t)$$

$$i(t) = -\frac{V_{0}\sin(\omega_{0}t)}{j\omega_{0}L} + \frac{4V_{0}\sin(4\omega_{0}t)}{j4\omega_{0}L} = J[I_{m}\sin(\omega_{0}t) - I_{m}\sin(4\omega_{0}t)]$$
Reading of meter = overall RMS value of $i(t)$

$$= \sqrt{\left(\frac{I_m}{\sqrt{2}}\right)^2 + \left(\frac{I_m}{\sqrt{2}}\right)^2} = I_m = \sqrt{2}I_0$$

16. (b)

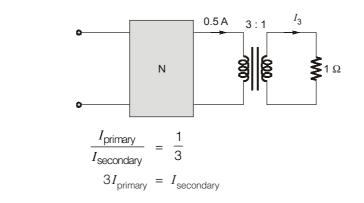
Network 'N' can be replaced as



Applying KVL at loop (1)

	$20 = 4I_1 + 8I_2$
also	$V_2 = -9I_2 = I_1 + 3I_2$
\Rightarrow	$I_1 = -12I_2$
	$20 = 4(-12I_2) + 8I_2$
	$20 = -40I_2$
\Rightarrow	$I_2 = -0.5 \text{ A}$
	$I_1 = -12(-0.5) = 6 \text{ A}$

Now,



 \Rightarrow

$$3(-I_2) = I_3$$

$$I_3 = 1.5 \text{ A}$$

Power delivered to 1 $\Omega = (I_3)^2 \times R_L = (1.5)^2 \times 1$

$$= 2.25 \text{ Watts}$$

17. (a)

 \Rightarrow

$$Y = Y_1 + Y_2$$

$$Y = \frac{1}{R + jX_L} + \frac{1}{R - jX_C}$$

$$Z \Rightarrow$$

$$Y = \frac{R - jX_L}{(R^2 + X_L^2)} + \frac{(R + jX_C)}{(R^2 + X_C^2)}$$

$$\operatorname{Im}(Y) = \frac{-X_{L}(R^{2} + X_{C}^{2}) + X_{C}(R^{2} + X_{L}^{2})}{(R^{2} + X_{L}^{2})(R^{2} + X_{C}^{2})}$$

For '
$$Z$$
' to purely resistive

also Im(Y) = 0

 \Rightarrow

~

$$\begin{split} X_{L}(R^{2}+X_{C}^{2}) &= X_{C}(R^{2}+X_{L}^{2}) \\ R^{2}X_{L}+X_{C}^{2}X_{L} &= R^{2}X_{C}+X_{L}^{2}X_{C} \\ R^{2}(X_{L}-X_{C}) &= X_{L}X_{C}(X_{L}-X_{C}) \\ R^{2} &= X_{L}X_{C} = \omega L \times \frac{1}{\omega C} = \frac{L}{C} \end{split}$$

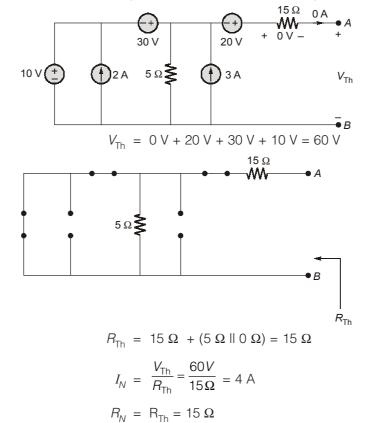
18. (a)

Maximum power will be delivered to R_L , when $R_L = R_{Th}$. To determine R_{Th} :

So,

19. (a)

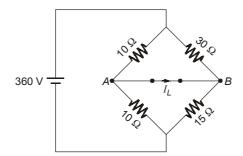
It is very easy to calculate Thevenin's equivalent rather than Norton's equivalent for the given circuit.



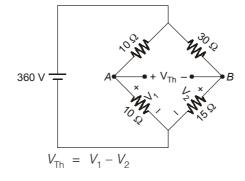
So,

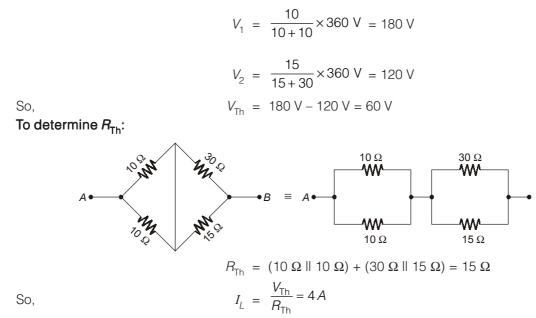
20. (b)

In the steady state condition, for DC excitation , Inductor acts as short circuit.



It is easy to calculate I_L by calculating Thevening equivalent across the terminals A and B. To determine V_{Th} :





Steady state energy stored in the inductor is,

$$W_L = \frac{1}{2}LI_L^2 = \frac{1}{2}(2)(4)^2 J = 16 J$$

21. (a)

$$i$$

 $50 \angle -23.96^{\circ}$ \bigcirc i_1
 i_2
 $j_3 \Omega$
Choke
 $Z = 3 - j4$

Here, applying KCL

MADE EASY

for IES, GATE & PSI

$$i(t) = i_{1}(t) + i_{2}(t)$$

$$= \frac{V_{1}}{6 + j8} + \frac{V_{1}}{3 - j4} \implies V_{1}\left(\frac{3 - j4 + 6 + j8}{2(3 + j4)(3 - j4)}\right)$$

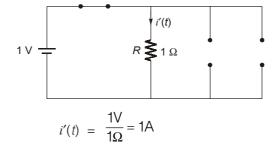
$$= \frac{V_{1}(9 + j4)}{2 \times 25} \implies \frac{50 \angle -23.96^{\circ} \times \sqrt{97} \angle 23.96^{\circ}}{50} \land A$$

$$= \sqrt{97} \land A$$

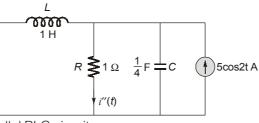
$$= 9.85 \land A$$

22. (a)

The given circuit has two sources with different frequencies, hence we have to use superposition theorem. When 1 V DC source is acting alone (in steady state):



When 5cos 2*t* A AC source is acting alone (in steady state):



The circuit looking like a parallel RLC circuit.

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2 \text{ rad/sec}$$

And the source is also working with 2 rad/sec. So, the circuit will be in resonance. When the parallel RLC circuit is in resonance, the total source current flows through the resistor.

So, $i''(t) = 5\cos 2t A$ When both the sources are acting simultaneously,

$$i(t) = i'(t) + i''(t) = (1 + 5\cos 2t) A$$

23. (d)

It is clear from the given circuit that, the current flowing through 1 Ω resistor due to either 5 V source alone or 30 A source alone is in the same direction.

So,

$$I_{1\Omega} = I_{1\Omega} + I_{1\Omega}$$

$$I_{1\Omega}' = \sqrt{\frac{1W}{1\Omega}} = 1A$$

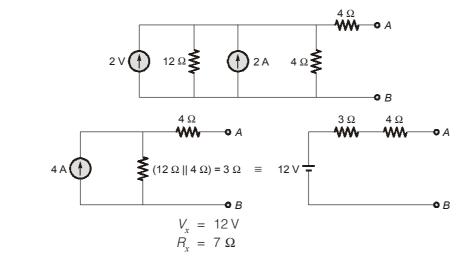
$$I_{1\Omega}'' = \sqrt{\frac{576W}{1\Omega}} = 24A$$

$$I_{1\Omega} = 24A + 1A = 25A$$

$$P_{1\Omega} = (25A)^{2} (1\Omega) = 625W$$

24. (b)

By applying source transformation technique, we get,



25. (d)

So,

and

The voltage across inductor is,

$$v_L = L \frac{di_L}{dt} = L \frac{di_s(t)}{dt}$$

Current across capacitor is given by,

$$i_{c} = C \frac{dv_{c}}{dt}$$

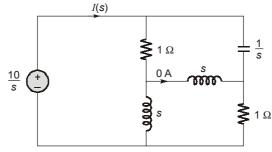
$$v_{c} = 3v_{L}$$

$$i_{c} = 3C \frac{dV_{L}}{dt} = 3C L \frac{d^{2}i_{s}(t)}{dt^{2}} = -9.6 \sin 4t \text{ A}$$

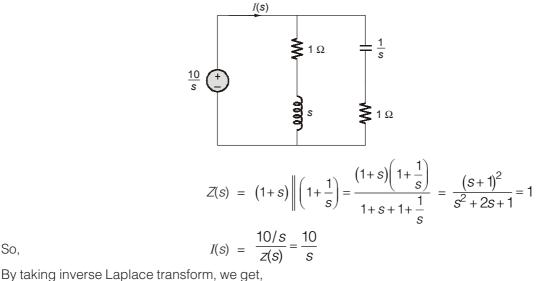
 \Rightarrow

26. (d)

By considering the given circuit in Laplace domain, we get,



Bridge is balanced, hence the circuit can be reduced as,



i(t) = 10 u(t) A

27. (a)

So,

Applying KVL,

$$V_{xy} - j\omega L_2 i_2 - j\omega M i_1 = 0$$

as $i_2 = 0$
then, $V_{xy} - j\omega M i_1 = 0$...(i)

applying KVL in loop 1

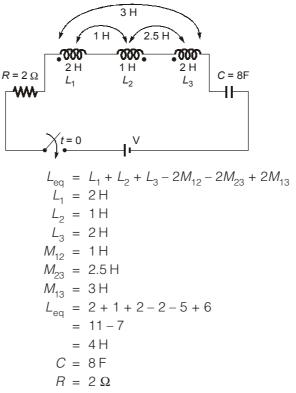
$$V_1 = j\omega L_1 i_1 \dots (ii)$$

Using value of i_1 from equation (ii) in equation (i)

$$V_{xy} = j\omega M \left[\frac{V_1}{j\omega L_1} \right] = \frac{MV_1}{L_1}$$

28. (a)

For the circuit



Note : M_{12} , M_{23} is negative, because both L_1 , L_2 and L_2 , L_3 opposes the flux of respective loops.

$$\xi = \frac{R}{2}\sqrt{\frac{C}{L}} = \frac{2}{2}\sqrt{\frac{8}{4}} = \sqrt{2} = 1.414$$

Thus, the given circuit is overdamped.

29. (b)

For t > 0, the given circuit acts like a series RLC circuit,

and
$$L = 40 H$$

 $C = 10 \mu F$

Damping ratio,
$$\zeta = \frac{1}{2\Omega}$$

Quality factor,

 $Q = \frac{1}{R} \sqrt{\frac{L}{C}}$

 $\zeta = \frac{R}{2} \sqrt{\frac{C}{L}}$

(for series RLC circuit)

So,

 $\zeta \ge 1$ for oscillation free response.

So,
$$\frac{R}{2}\sqrt{\frac{C}{L}} \ge 1$$

$$R \geq 2\sqrt{\frac{L}{C}} = 2\sqrt{\frac{40}{10} \times 10^6}$$

$$R \ge 4 \text{ k}\Omega$$

 $R_{\min} \ge 4 \text{ k}\Omega$

30. (c)

In a series RL circuit,

$$v_{L}(t) = V_{s}e^{-t/\tau} u(t)$$

$$v_{R}(t) = V_{s}(1 - e^{-t/\tau}) u(t)$$

$$\tau = \frac{L}{R} = \frac{7H}{2\Omega} = 3.5 \text{ sec}$$

$$V_{s}e^{-t/\tau} = V_{s}(1 - e^{-t/\tau})$$

$$2e^{-t/\tau} = 1$$

$$-\frac{t}{\tau} = \ln(1/2)$$

$$t = \tau \ln(2) = 2.426 \text{ sec}$$