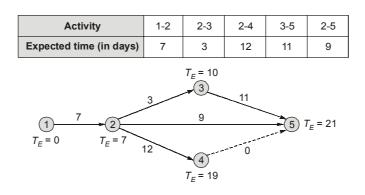
- C	LASS	TE	ST —			SI	. : 02_SK_CE	_S+G	_011022
India's Best Institute for IES, GATE & PSUs									
		-	yderabad Jaip v.madeeasy.in	-		-			Patna
CPMT-PERT									
CIVIL ENGINEERING									
Date of Test: 01/10/2022									
			Dateo	i ie	st:01/10	720	22		
	SWER KEY								
1.	(a)	7.	(c)	13.	(a)	19.	(a)	25.	(a)
2.	(a)	8.	(d)	14.	(a)	20.	(c)	26.	(b)
3.	(c)	9.	(c)	15.	(d)	21.	(b)	27.	(c)
4.	(d)	10.	(d)	16.	(a)	22.	(c)	28.	(c)
5.	(b)	11.	(d)	17.	(b)	23.	(c)	29.	(a)


India's Best Institute for IES,

DETAILED EXPLANATIONS

1. (a)

Only D is predecessor to activity F

2. (a)

3. (c)

Cost slope = $\frac{8600 - 6000}{8 - 3} = 520$

For duration of 5 days

Direct cost = 6000 + 520 (8 - 5) = ₹7560

6. (a)

In bar charts, inter dependences between various activities is not shown.

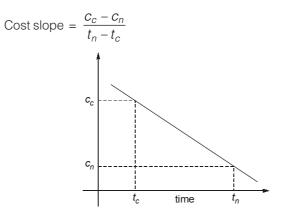
7. (c)

Correct sequence of analysing a project will be as follows:

- 1. Work break down structure.
- 2. Network diagram.
- 3. Resource allocation and scheduling.
- 4. Project completion time.
- 5. Time cost study.

8. (d)

Project duration will be 4T as there are four activities are in series but over all project duration will be $4T \pm 3\sigma$.


$$\sigma$$
 for entire project = $\sqrt{K^2 + K^2 + K^2 + K^2}$

$$\Rightarrow$$

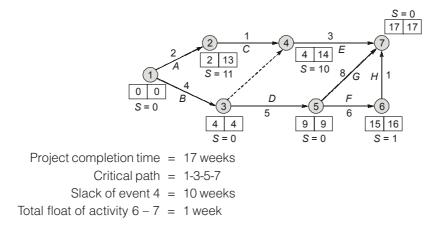
:..

$$\sigma = 2K$$

Over all project duration = $4T \pm 6K$

9. (c)

10. (d)

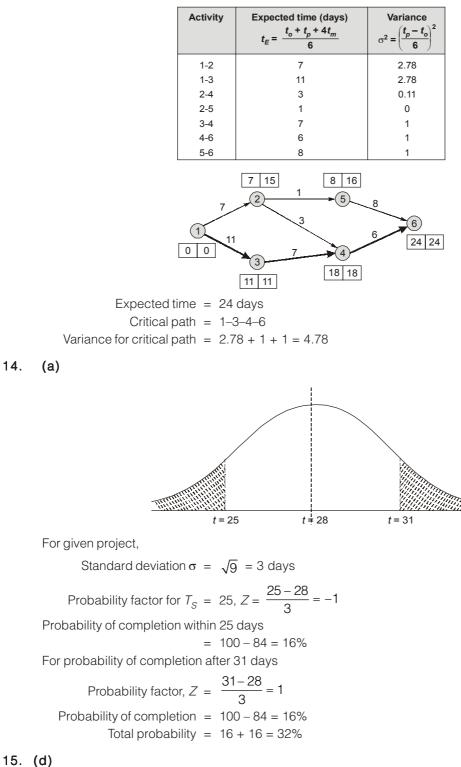

FDB =
$$1 - \left(\frac{c_s}{c_i}\right)^{1/n}$$

= $1 - \left(\frac{2000}{16000}\right)^{1/3} = 0.5$

11. (d)

Cost of machine = ₹100000
Rate of interest,
$$i = 10\% = 0.1$$

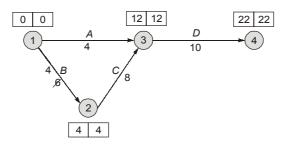
Capital recovery factor (CRF) = $\frac{i(1+i)^n}{(1+i)^n - 1}$
 \Rightarrow CRF = $\frac{0.1(1+0.1)^{20}}{(1+0.1)^{20} - 1} = 0.11746$
 \therefore The annual equipment cost = 100000 × 0.11746
= ₹11746


12. (a)

For given network diagram,

14.

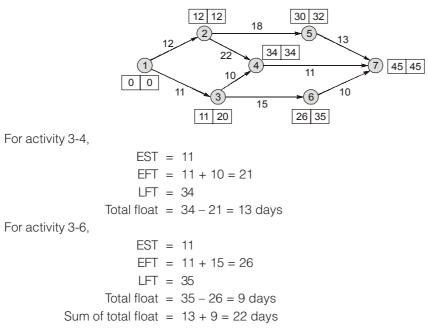
During crashing of an activity, the duration of activity is reduced due to which:


- 1. Indirect cost decreases.
- 2. Direct cost increases.

India's Best Institute for IES, GATE & PSUe

16. (a)

		1	1 1	
	Activity	Crash limit (days)	Cost Slope (₹/day)	
	A	4-3=1	(105-80)/(4-3) = 25	
	В	6-4=2	(250 - 180) / (6 - 4) = 35	
	С	8-5=3	(320 - 200) / (8 - 5) = 40	
	D	10 - 6 = 4	(530 - 350) / (10 - 6) = 45	
Activity	Δ	B	C	Л
/ Collvily	71	D	0	\mathcal{D}
Critical	_	\checkmark	\checkmark	\checkmark


Since the critical activity B has the lowest crash cost per day, it should be crashed first. Hence, crash activity B by 2 days

Critical path is still *B*-*C*-*D* Project completion time = 22 days Project cost = 810 + (2) (35) = ₹ 880

17. (b)

Network diagram,

18. (c)

For the given project, available paths are:

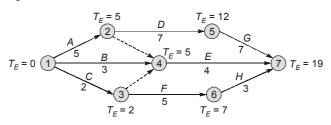
Available paths

(i) $1-2-3-5-6 \Rightarrow$ Time duration = 18 days (ii) $1-2-4-5-6 \Rightarrow$ Time duration = 18 days

So both paths are critical.

Combination of activities to crash the path, and their respectively cost slopes are given below:

```
(i) only A
                            ₹600/day
                       \rightarrow
(ii) only F
                            ₹700/day
                       \rightarrow
(iii) B and C
                       → 200 + 300 = ₹ 500/day
                       → 200 + 200 = ₹ 400/day
(iv) B and E
(v) D and C
                       → 300 + 300 = ₹ 600/day
(vi) D and E
                            300 + 200 = ₹ 500/day
                       \rightarrow
So we will crash that combination of activity for which slope is minimum i.e. B and E.
```

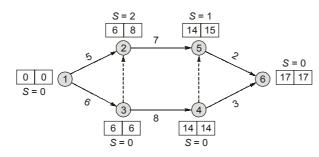

19. (a)

Path available	Duration (days)	Standard deviation (days)
1-2-4-6	5 + 8 + 17 = 30	
1 - 2 - 4 - 5 - 6	5 + 8 + 5 + 18 = 36	2.345
1 - 2 - 5 - 6	5 + 13 + 18 = 36	2.69
1-3-5-6	4 + 11 + 18 = 33	

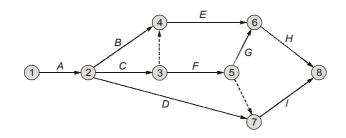
So, number of critical path = 2 Path with more uncertainty = 1 - 2 - 5 - 6

20. (c)

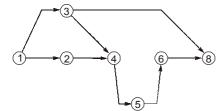
For given network diagram



After updating



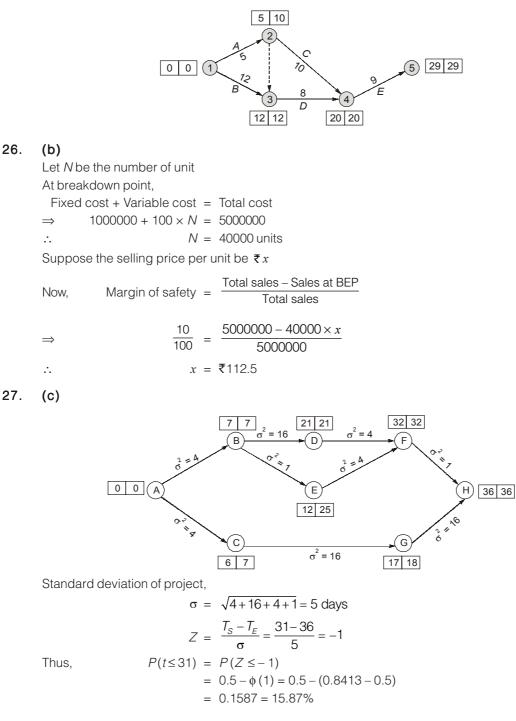
21. (b)


Sum of slacks = 2 + 1 = 3 days

22. (c)

23. (c)

There is an extra dummy between events (7) and (8). There are two arrows joining events (2) and (4). There is extra dummy connecting nodes (4) and (6). The correct diagram will be


So there are two errors.

24. (b)

Expected time =
$$\frac{t_0 + t_p + 4t_m}{6} = \frac{12 + 25 + 20 \times 4}{6}$$
$$= \frac{117}{6} \text{ minutes}$$
Standard deviation, $\sigma = \frac{t_p - t_0}{6} = \frac{25 - 12}{6} = \frac{13}{6} \text{ minutes}$ Minimum time alloted, $t_{\min} = t_E - 3\sigma$
$$= \frac{117}{6} - \frac{3 \times 13}{6} = 13 \text{ minutes}$$

25. (a)

For given relationship

India's Best Institute for IES, GATE & PSUs

28. (c)

From straight line method of depreciation

Depreciation,
$$D = \frac{c_i - c_s}{n}$$

 $D = \frac{10000 - 1000}{5} = \text{Rs.}1800$
Book value, $B_m = c_i - mD$
 $B_2 = 10000 - 2 \times 1800$
 $= \text{Rs.} 6400$

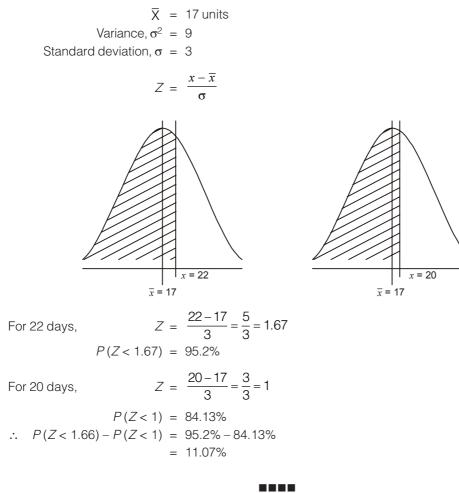
29. (a)

Project No.	Cost (₹)	No. of Cars	Unit Cost (₹)
1.	450000	150	3000
2.	320000	80	4000
3.	600000	120	5000
4.	360000	90	4000
5.	300000	60	5000
6.	660000	220	3000
7.	280000	70	4000
8.	720000	180	4000

Forecast weighted unit cost,

$$UC = \frac{A + 4B + C}{6}$$
where,

$$A = ₹5000$$


$$B = \frac{3000 + 4000 + 5000 + 4000 + 5000 + 3000 + 4000 + 4000}{8} = ₹4000$$

$$C = ₹3000$$

$$UC = \frac{5000 + 4 \times 4000 + 3000}{6} = ₹4000$$
Project cost = UC × Number of units

= 4000 × 135 = ₹ 540000

30. (d)

