CLASS TEST									
						S.No.	: 04 LS	1_EC_GE_1	30719
							Contr	ol Systems	
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	EL	EC	TRON	lics	ΕN	IGINEI	ERI	٧G	
			Date of Test : 13/07/2019						
ANSWER KEY >			Control	Systen	ns				
1.	(a)	7.	(d)	13.	(d)	19.	(c)	25.	(c)
2.	(d)	8.	(c)	14.	(b)	20.	(b)	26.	(c)
3.	(d)	9.	(c)	15.	(c)	21.	(c)	27.	(c)
4.	(c)	10.	(c)	16.	(a)	22.	(c)	28.	(c)
5.	(c)	11.	(a)	17.	(c)	23.	(c)	29.	(d)
6.	(c)	12.	(a)	18.	(b)	24.	(b)	30.	(c)

DETAILED EXPLANATIONS

1. (a)

From figure (a) Eliminating first loop

$$\frac{y}{u} = \frac{\frac{10}{s(s+21)}}{1+\frac{10}{s(s+21)}} = \frac{10}{s^2+21s+10}$$

$$u \xrightarrow{+} \underbrace{10}_{s+21} \underbrace{1}_{s+21} \underbrace{1}_{s} \underbrace{1}_{s}$$

2. (d)

Centroid, $\sigma = -2$ Break away point = -2. In choice (c), break away point is between 1 and 2 and centroid = -2.

3. (d)

•.•

$$G(j\omega) = \frac{(-\omega^2 + 4)(j\omega + 2)}{(j\omega + 9)(j\omega + 8)(j\omega + 6)}$$

 $\therefore G(j\omega) = 0 \text{ at } \omega^2 = 4$ $\omega = 2 \text{ rad/sec or } f = 0.318 \text{ Hz}$

4. (c)

 T_D the delay time, is not a desirable feature. It is the time taken by the system before starting to respond. Hence. T_S/T_D cannot be less than 1 as the system is unstable in this case. So the ratio T_S/T_D should be made as large as possible to make the sytem controllable. Therefore, the answer at (c) (greater than 10) is appropriate.

5. (c)

loop	$L_1 = -2$
loop	$L_2 = -4$
non-touching loop	$L_1 L_2 = 8$
forward path	$P_1 = 4 \times 3 \times 2 = 24$
forward path	$P_{2} = 5$
	$\frac{C}{C} = \frac{24+5}{24+5} = \frac{29}{2} = 1.933$
••	R 1+2+4+8 15

6. (c)

 $t_r = \frac{\pi - \phi}{\omega_d}$

where

$$= \tan^{-1}\left(\frac{\sqrt{1-\xi^2}}{\xi}\right)$$

and

$$\omega_d = \omega_n \sqrt{1 - \xi^2}$$

7. (d)

characteristic equation = |(SI - A)|

$$|(sI - A)| = \begin{vmatrix} s+1 & 0\\ 0 & s+2 \end{vmatrix} = (s+1)(s+2) = s^2 + 3s + 2$$

comparing with second order characteristic equation

ø

$$\omega_n = \sqrt{2}$$

$$2\xi\omega_n = 3$$

$$\xi = \frac{1.5}{\sqrt{2}} = 1.06$$

thus the system is over damped.

8. (c)

The transfer function has 3 poles since 1 pole introduces a decay of -20 dB/dec and 2 zeros because 1 zero adds a slope of 20 dB/dec.

9. (c)

margin = $\frac{1}{a}$

Where,

G.M. =
$$\frac{1}{a}$$
 = 1
G.M. in dB = 20 log 1 = 0
For phase margin, ϕ = -180°
P.M. = 180 + ϕ = 18

a = 1

$$M. = 180 + \phi = 180 - 180 = 0$$

11. (a)

$$G(s) = \frac{1}{sT_1(1+sT_2)}$$
$$TF = \frac{\frac{1}{sT_1(1+sT_2)}}{1+\frac{1}{sT_1(1+sT_2)}} = \frac{1}{sT_1(1+sT_2)+1} = \frac{1}{s^2T_1T_2+sT_1+1}$$

$$= \frac{1}{T_{1}T_{2}\left(s^{2} + \frac{s}{T_{2}} + \frac{1}{T_{1}T_{2}}\right)}$$

$$\omega_{r_{1}} = \frac{1}{\sqrt{T_{1}T_{2}}};$$

$$\xi = \frac{1}{2}\sqrt{\frac{T_{1}}{T_{2}}};$$
for $\xi << 1$, \Rightarrow $T_{1} << T_{2}$
(a)
Zeros $s = -2$
Poles: $s = -1 + j2, -1 - j2$
The transfer function is
$$G(s) = \frac{K(s+2)}{(s+1-j2)(s+1+j2)}$$
where
$$K = \frac{\text{multiplication of vector lengths drawn from all poles}}{\text{multiplication of vector lengths drawn from all zeros}}$$

$$= \frac{\sqrt{10} \times \sqrt{2}}{\sqrt{5}} = 2$$

$$G(s = j1) = \frac{2(j1+2)}{(j1+1-j2)(j1+1+j2)} = \frac{2(2+j1)}{(1-j1)(1+j3)}$$

$$= \frac{2 \times 2.236 \angle 26.6^{\circ}}{1.4142 \angle -45^{\circ} \times 3.162 \angle 71.57^{\circ}} = 1\angle 0^{\circ}$$

Hence choice (a) is correct.

13. (d)

12.

The poles of the three systems will have same real part and two poles for each system indicate a second

order system. The envelope of the second order system with unit step input is governed by $e^{-\xi \omega_n t}$. Thus the second order system will have same envelope for the following systems.

14. (b)

$$\begin{split} & \omega_{pc} \text{ is given by} \\ -\tan^{-1}(\omega_{pc}) - \tan^{-1}(2\omega_{pc}) - \tan^{-1}(3\omega_{pc}) = -180^{\circ} \\ & \tan^{-1}(\omega_{pc}) + \tan^{-1}(2\omega_{pc}) = 180^{\circ} - \tan^{-1}(3\omega_{pc}) \end{split}$$

$$\frac{3\omega_{pc}}{1-2\omega_{pc}^2} = -3\omega_{pc}$$

$$1 = -1 + 2\omega_{pc}^{2}$$
$$\omega_{pc} = 1 \text{ rad/sec}$$

15. (c)

 $C(s) = \frac{K}{s(s+a)}$ $C(s) = \frac{K/a}{s} - \frac{K}{a(s+a)}$ $c(t) = \frac{K}{a}(1 - e^{-at})$ $c(\infty) = \frac{K}{a} = 1$ K = a

$$r(t) \longrightarrow \boxed{\frac{K}{s+a}} \longrightarrow c(t)$$

now analysing slope at t = 0, we get

16. (a)

()		
At	$\omega = 0$	$\angle G(j\omega)H(j\omega) = -90^{\circ}$
At	$\omega = \infty$	$\angle G(j\omega)H(j\omega) = -360^{\circ}$
type 1 and order $= 4$		

17. (c)

$$G(s) = \frac{K-2}{(s^2+2s+2)(s+1)+2k}$$

The characteristics equation is

$$1 + G(s)H(s) = 0$$

$$1 + \frac{K - 2}{(s^2 + 2s + 2)(s + 1) + 2k} = 0$$

or $(s + 1)(s^2 + 2s + 2) + 2k + k - 2 = 0$
or $s^3 + 2s^2 + 2s + s^2 + 2s + 2 + 3K - 2 = 0$
or $s^3 + 3s^2 + 4s + 3K = 0$
Poutb Array

Routh Array

s³ 1 4 **s**² 3 ЗK $\frac{12-3K}{3}$ s¹ 0 s⁰ 3K

For marginal stable, 12 - 3K = 0K = 4or Auxilliary equation, $3s^2 + 3K = 0$ for $s = j\omega$, $-3 \omega^2 + 3 \times 4 = 0$ $\omega^2 = 4$ $\omega = 2 \text{ rad/sec}$

18. (b)

Characteristic equation,

$$1 + G(s) H(s) = 0$$

or,
$$s^2 + 15s + 200 = 0$$

On comparison with standard second order characteristic equation we get,

 $2\xi\omega_n = 15$ and $\omega_n = \sqrt{200}$ rad/sec $\xi = \frac{15}{2 \times \sqrt{200}} = 0.53$ $M_r = \frac{1}{2\xi\sqrt{1-\xi^2}} = \frac{1}{2\times 0.53\sqrt{1-0.53^2}}$ Resonant peak, = 1.11

19. (c)

or

or

Characteristics equation = 1 + G(s) H(s) = 0

$$1 + \frac{Ke^{-2s}}{(s+1)(s+2)} = 0 \qquad \text{Where, } e^{-sT} = (1 - sT) \qquad [\text{We can approximate}]$$

$$1 + \frac{K(1 - 2s)}{(s+1)(s+2)} = 0$$
or $s^2 + 3s + 2 + K - 2Ks = 0$
 $s^2 + s(3 - 2K) + K + 2 = 0$
Using Routh Array

s² K + 2 1 s¹ 3 – 2K 0 s⁰ K + 2

For stability

	3 - 2K >	0
	K+2 >	0
From equation (i),	Κ <	1.5
From equation (ii),	K >	-2
Therefore,	-2 <	K < 1.5
For absolute stability	и, K =	1

20. (b)

$$G(s) = \frac{K(s-1)}{s(s+2)}, \qquad K < 0$$

Since, K < 0 so, it have complementary root locus.

21. (c)

Closed loop transfer function,

$$T(s) = \frac{6}{s^2 + 5s + 6}$$
Open loop T.F.
$$= \frac{6}{s^2 + 5s + 6 - 6} = \frac{6}{s(s + 5)}$$

$$G(j\omega) = \frac{6}{j\omega(j\omega + 5)}$$
Magnitude, $M = \frac{6}{\omega\sqrt{\omega^2 + 25}}$
Phase angle, $\phi = -90^\circ - \tan^{-1}\left(\frac{\omega}{5}\right)$
at, $\omega = 0$, $M = \infty$, $\phi = -90^\circ$
at, $\omega = \infty$, $M = 0$, $\phi = -180^\circ$
Polar plot
$$M = 0, Re$$

 $\omega = 0$

...(i) ...(ii)

22. (c)

23.

24.

	N =	$\frac{t_s}{T} = \frac{\text{settling time}}{\text{time period oscillation}} = \frac{4}{\xi\omega_n} \times \frac{\omega_d}{2\pi} = \frac{2\omega_n\sqrt{1-\xi^2}}{\pi\xi\omega_n}$
	N =	$\frac{2\sqrt{1-\xi^2}}{\pi\xi}$
⇒	$\frac{\pi\xi}{\sqrt{1-\xi^2}} =$	$\frac{2}{N}$
we know that,	$M_{p} =$	$e^{rac{-\pi\xi}{\sqrt{1-\xi^2}}}$
	$lnM_p =$	$\frac{-\pi\xi}{\sqrt{1-\xi^2}}$
	$ lnM_p =$	$\frac{\pi\xi}{\sqrt{1-\xi^2}} = \frac{2}{N}$
	$ lnM_p \propto$	$\frac{1}{N}$
(c)		
	$\phi_m =$	$\sin^{-1}\left(\frac{1-\alpha}{1+\alpha}\right) = 30^{\circ}$
	$\phi_m =$	is positive, compensator is lead compensator
	$\frac{1-\alpha}{1-\alpha} =$	$\frac{1}{2}$
	$1+\alpha$	2
\Rightarrow	$\alpha =$	$\frac{1}{3}$
Also	$\omega_m =$	$\frac{1}{T\sqrt{\alpha}} = \sqrt{3}$
\Rightarrow	$\frac{\sqrt{3}}{T\sqrt{1}} =$	$\sqrt{3}$
\Rightarrow	T =	1
Z	ero is at $-\frac{1}{T}$ =	-1
pol	le is at $-\frac{1}{\alpha T} =$	$-\frac{1}{\frac{1}{3}\cdot 1} = -3$
Trar	sfer function =	$\frac{s+1}{s+3}$
(b)		
	<i>T</i> (<i>s</i>) =	$\frac{C(s)}{R(s)} = \frac{G(s) + 1}{1 + (1 + G(s)) \cdot 1} = \frac{1 + G(s)}{2 + G(s)}$
	S_G^T =	$\frac{\partial T/T}{\partial G/G} = \frac{\partial T}{T} \times \frac{G}{\partial G} = \frac{\partial T}{\partial G} \times \frac{G}{T}$
	_	$\frac{2+G(s)-1-G(s)}{2} \times \frac{G(s)}{2} \times 2+G(s) - \frac{G(s)}{2}$
	_	$(2+G(s))^2$ $1+G(s)$ $(1+G(s))(2+G(s))$

25. (c)

$$\frac{C(s)}{R(s)} = \frac{K}{s(s+a)(s+b)+s+K}$$

characteristic equation = $s^3 + (a + b)s^2 + (ab + 1)s + K$ Routh Table

$$s^{3} \qquad 1 \qquad ab+1$$

$$s^{2} \qquad a+b \qquad K$$

$$s^{1} \qquad \frac{(a+b)(ab+1)-K}{a+b}$$

$$s^{0} \qquad K$$

For oscillations s^1 Row must have zero element (a + b) (ab + 1) = KAlso auxiliary equation $A(s) = (a + b)s^2 + K$ at $s = j\omega$ $(a + b)(-\omega^2) + K$ $\omega^2 = \frac{K}{a + b} = \frac{(a + b)(ab + 1)}{(a + b)}$ $\omega = (\sqrt{ab + 1}) \text{ rad/sec}$

26. (c)

The open loop transfer function

$$G(s) H(s) = \frac{K(s+1)(s+2)}{2s}$$

Calculation of 'K'

$$5 \text{ dB}\Big|_{\omega = 0.1} = 20 \log K - 20 \log 0.1$$

$$K = 0.178$$

$$R = 0.178$$

Calculation of ω_{0}

$$G(s) H(s)|_{\omega = \omega_{gc}} = 1$$

$$\frac{0.178\sqrt{\omega^{2} + 1}\sqrt{\omega^{2} + 4}}{2\omega} = 1$$

$$(\omega^{4} + 5\omega^{2} + 4) = 126.25 \omega^{2}$$

$$\omega^{4} - 121.25 \omega^{2} + 4 = 0$$

$$\omega = 0.18 \text{ rad/sec and } 11.22 \text{ rad/sec}$$

or

27. (c)

Since the system is unity feedback H(s) = 1Characteristic equation : 1 + G(s) H(s) = 0

$$1 + \frac{K(s^2 + 1)}{(s + 1)(s + a)} \cdot (1) = 0$$

 $s^{2} + (a + 1)s + a + Ks^{2} + K = 0$ (1 + K) $s^{2} + (a + 1)s + (K + a) = 0$ using Routh's tabular form

$$\frac{1}{s^{2} (1+K) (a+K)}$$

$$s^{1} (a+1)$$

$$s^{0} (a+K)$$

for stability of the system

$$(1 + K) > 0 \quad \Rightarrow \quad K > -1$$

$$a + 1 > 0 \quad \Rightarrow \quad a > (-1)$$

$$a + K > 0 \quad \Rightarrow \quad a > (-K) \quad \Rightarrow \quad a > 1 \quad \because K > (-1)$$

So, a > 1 is the correct choice.

28. (c)

On observation

$$\begin{split} \omega_{0} &= \text{resonant frequency} \\ M_{0} &= \text{resonant peak} \\ \omega_{0} &= \omega_{r} = \omega_{n} \sqrt{1 - 2\xi^{2}} \\ M_{0} &= M_{r} = \frac{1}{2\xi\sqrt{1 - \xi^{2}}} \\ \text{transfer function} &= \frac{C(s)}{R(s)} = \frac{2 \times 4}{s^{2} + s + 4} = 2\left(\frac{4}{s^{2} + s + 4}\right) \\ 2\xi\omega_{n} &= 1 \\ \omega_{n} &= 2 \\ \xi &= 0.25 \\ \omega_{0} &= 2\sqrt{1 - 2 \times \frac{1}{16}} \\ \omega_{0} &= 2\sqrt{\frac{7}{8}} = 1.87 \text{ rad/sec} \\ M_{0} &= \frac{1}{2 \times \frac{1}{4}\sqrt{1 - \frac{1}{16}}} = \frac{1}{\frac{1}{2}\sqrt{\frac{15}{16}}} = \frac{1}{\frac{\sqrt{15}}{8}} = \frac{8}{\sqrt{15}} \\ M_{0} &= 20\log_{10}\left(\frac{8}{\sqrt{15}}\right) = 6.30 \text{ dB} \end{split}$$

Since system has gain '2'.

at $\omega = 0$ gain is $10\log_{10}2 = 6.02$ dB

29. (d)

Applying Mason gain formula

 $\begin{array}{rcl} L_1&=&defgd=-G_2G_4\\ L_2&=&bcdeb=L_3=abcda=L_4=cfgdebc=L_5=cfgdeabc=-G_1G_2\\ \Delta&=&1-(L_1+L_2+L_3+L_4+L_5)\\ &=&1+G_2G_4+4G_1G_2\\ p_1\mbox{ (forward path)}&=&G_1G_2G_4\\ p_2\mbox{ (forward path)}&=&G_1(-1)\\ \mbox{ All loops are touching paths p_1 and p_2} \end{array}$

$$\frac{C}{R} = \frac{G_1 G_2 G_4 - G_1}{1 + 4 G_1 G_2 + G_2 G_4}$$

30. (c)

$$T(s) = \frac{8}{(s+10)^2}$$
$$s = j\omega$$
$$T(j\omega) = \frac{8}{(j\omega+10)^2}$$
$$|T(j\omega)| = \frac{8}{(\sqrt{\omega^2+10^2})^2}$$

 \therefore output amplitude = input amplitude $\times |T(\omega)|$

output amplitude = $2 \times \frac{8}{\left(\sqrt{\omega^2 + 10^2}\right)^2}$

where

$$\omega = 3 \text{ rad/sec}$$

output amplitude =
$$\frac{2 \times 8}{(\sqrt{9 + 100})^2} = \frac{16}{109}$$

= 0.146 \approx 0.15