

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

SOIL MECHANICS

CIVIL ENGINEERING

Date of Test: 19/09/2022

ANSWER KEY > (b) 7. (b) 13. (b) 19. (d) 25. (c) 2. (b) (a) 14. (b) 20. (d) 26. (a) 3. (b) 9. (a) 15. (d) 21. (d) 27. (c) 10. (b) 16. (b) 22. (c) 28. (b) 11. (b) 17. (d) 23. (b) 29. (a) 12. (a) 18. (b) (b) 24. (a) 30. (a)

DETAILED EXPLANATIONS

$$K = \frac{aL}{At} \ln \left(\frac{h_1}{h_2} \right)$$

$$h_1 = 40 \text{ cm}, h_2 = 20 \text{ cm}$$

$$a = \frac{\pi}{4} \times 0.5^2 \text{ cm}^2$$
; $L = 15 \text{ cm}$; $A = \frac{\pi}{4} \times 10^2 \text{ cm}^2$; $t = 1 \times 60 \times 60 = 3600 \text{ s}$

$$K = \frac{\frac{\pi}{4}(0.5)^2 \times 15}{\frac{\pi}{4}(10)^2 \times 3600} \ln\left(\frac{40}{20}\right)$$
$$= 7.22 \times 10^{-6} \text{ cm/s}$$
$$= 4.33 \times 10^{-4} \text{ cm/min}$$

2. (b)

$$\sigma_z = \frac{2q}{\pi z} = \frac{2 \times 150}{\pi \times 5}$$
= 19.099 kN/m²

3. (b)

$$D = 0.4 \text{ m}, L = 15 \text{ m}, c_u = \frac{80}{2} = 40 \text{ kN/m}^2, \alpha = 0.8, \text{FOS} = 3$$

$$Q_{\text{up}} = 9c \cdot \frac{\pi}{4}d^2 + \alpha c \pi dL$$

$$Q_{up} = 9 \times 40 \times \frac{\pi}{4} \times 0.4^2 + 0.8 \times 40 \times \pi \times 0.4 \times 15$$

$$Q_{up} = 648.42 \text{ kN}$$

$$648.42$$

$$\therefore ext{ Design load capacity of pile} = \frac{648.42}{3} = 216.14 \text{ kN}$$

- **4. (c)** The total compression is always constant for a given load and does not depend on C_v and k.
- 7. (b)

$$q = h\sqrt{k_x k_y} \times \frac{N_f}{N_d}$$

$$= 8 \times \sqrt{5 \times 10^{-6} \times 6 \times 10^{-6}} \times \frac{6}{18}$$

$$= 14.6 \times 10^{-6} \text{ m}^3/\text{s/m}$$

8. (a)

As per Skempton's theory, net ultimate bearing capacity is given by,

$$q_{nu} = cN_c$$

$$D_f/B = \frac{1.5}{2} = 0.75$$

$$0 < \frac{D_f}{R} < 2.5$$

$$\Rightarrow$$

.. For square footing,

$$N_c = 6 \left[1 + \frac{0.2D_f}{B} \right] = 6 \times [1 + 0.2 \times 0.75] = 6.9$$

$$\Rightarrow q_{nu} = cN_c = 30 \times 6.9 = 207 \text{ kN/m}^2$$

9. (a)

Equation of A-line,
$$I_p = 0.73 (w_L - 20)$$

= 0.73 (60 - 20) = 29.2

As soil lies above A-line, the soil will be clay. Now, as $w_{\rm L}$ > 50, soil will be classified as CH.

10. (b)

For sandy soils,

$$q_u = \gamma D_f N_q + \frac{1}{2} \gamma B N_{\gamma}$$
 (: $c = 0$)

If water table rises to ground surface from great depth, γ will be replaced by γ' in both terms. Since γ' is approximately half of γ , ultimate bearing capacity will also become approximately half.

11. (b)

Presence of organic matter reduces the specific gravity of soil.

12. (a)

Maximum depth of unsupported excavation,

$$H_C = \frac{4c}{\gamma \sqrt{k_a}}$$

For pure clay, $\phi = 0$ and thus $k_a = 1$

$$H_C = \frac{4c}{\gamma} = \frac{4 \times 80}{20} = 16 \text{ m}$$

:. Active earth pressure at base level of excavation is

$$P_a = k_a \gamma H_c - 2c \sqrt{k_a}$$

= 20 × 16 - 2 × 80
= 160 kN/m²

13. (b)

At the steady state condition neither flow nor pore water pressure will change with time.

14. (b)

Deformations of soils are function of effective stress.

15. (d)

Quick clay has sensitivity > 30.

17. (d)

Coefficient of compressibility,

$$a_v = \frac{\Delta e}{\Delta \overline{\sigma}} = \frac{0.05}{100 - 50} = 0.001 \text{ m}^2/\text{kN}$$

Coefficient of volume change,

$$m_v = \frac{a_v}{1 + e_0} = \frac{0.001}{1 + 0.7} = \frac{0.001}{1.7}$$

$$\Rightarrow m_v = 5.88 \times 10^{-4} \,\mathrm{m^2/kN}$$

18. (b)

At liquid limit,
$$w_L = \frac{W_w}{W_s} = \frac{m_w}{m_s}$$

$$0.45 = \frac{m_w}{m_s}$$

$$m_w = 0.45 m_s$$

Volume of soil sample,
$$V = V_w + V_s$$

$$= \frac{m_w}{\rho_w} + \frac{m_s}{\rho_s}$$

$$= \frac{0.45m_s}{\rho_w} + \frac{m_s}{G.\rho_w}$$

$$\Rightarrow 23 = \frac{0.45m_s}{1} + \frac{m_s}{2.73 \times 1}$$

$$\Rightarrow m_s = 28.18 \text{ g}$$
(:: $\rho_s = G\rho_w$)

The minimum volume will be attained by soil at shrinkage limit.

At shrinkage limit,
$$w_s = \frac{m_w}{m_s} = 0.18$$

$$\Rightarrow m_w = 0.18 m_s$$
Minimum volume, $V_{\min} = V_w + V_s$

$$= \frac{m_w}{\rho_w} + \frac{m_s}{\rho_s}$$

$$= \frac{0.18 m_s}{\rho_w} + \frac{m_s}{G \rho_w}$$

$$= \frac{0.18 \times 28.18}{1} + \frac{28.18}{2.73 \times 1} = 15.39 \approx 15.4 \text{ cc} \qquad (\because m_s = \text{constant})$$

20. (d)

Total stress at
$$A$$
, $\sigma = \gamma_{sat} \times 1$
= 19.62 kN/m²

Pore water pressure at *A*, $u = -2 \times \gamma_w$

$$= -19.62 \text{ kN/m}^2$$

Effective stress at A, $\bar{\sigma} = \sigma - u$

$$= 19.62 - (-19.62) = 39.24 \text{ kN/m}^2$$

21. (d)

Void ratio,
$$e = \frac{wG}{S} = \frac{0.4 \times 2.65}{1}$$

 $e = 1.06$

[: Fully saturated]

 \Rightarrow

Saturated unit weight of clay,

$$\gamma_{\text{sat}} = \left(\frac{G+e}{1+e}\right) \gamma_w = \left(\frac{2.65+1.06}{1+1.06}\right) \times 9.81$$

$$= 17.667 \text{ kN/m}^3$$

Effective stress at centre of clay layer due to clay = $17.667 \times 3 = 53 \text{ kN/m}^3$

Total intial overburden pressure = $260 + 53 = 313 \text{ kN/m}^3$

Consolidation settlement,
$$S = \frac{H_0 C_c}{1 + e_0} \log_{10} \left(\frac{\overline{\sigma}_0 + \Delta \overline{\sigma}}{\overline{\sigma}_0} \right)$$
$$= \frac{6 \times 0.5}{1 + 1.06} \log_{10} \left(\frac{313 + 100}{313} \right) = 0.1754 \text{ m}$$
$$= 17.54 \text{ cm}$$

22. (c)

Effective normal stress,
$$\overline{\sigma} = \sigma - u$$

= 328 - 114
= 214 kPa
Shear resistance, $\tau = c' + \overline{\sigma} \tan \phi'$

$$= 25 + 214 \times \tan 30^{\circ}$$

= 148.55 kPa

23. (b)

$$n = 0.5;$$
 \therefore $e = \frac{n}{1-n} = \frac{0.5}{0.5} = 1$

$$Se = wG$$

$$S = 0.7; e = 1; G = 2.7$$

$$w = \frac{Se}{G} = \frac{0.7 \times 1}{2.7} = 0.259$$

$$\gamma = \frac{(G + Se)\gamma_w}{1 + e} = \frac{G\gamma_w(1 + w)}{1 + e} = \frac{2.7 \times 10 \times 1.259}{2}$$

$$= 16.99 \text{ kN/m}^3$$

24. (a)

$$\eta_g = 1 - \frac{\theta}{90} \left[\frac{(n-1)m + (m-1)n}{mn} \right]$$

Here, m = 4, n = 5

$$\theta = \tan^{-1} \left(\frac{d}{s} \right) = \tan^{-1} \left(\frac{400}{1000} \right) = 21.8^{\circ}$$

$$\eta_g \ = \ 1 - \frac{21.8}{90} \left[\frac{(5-1)4 + (4-1)5}{4 \times 5} \right]$$

$$Q_g = n \cdot Q_u \cdot \eta_g$$

$$= 20 \times 380 \times \frac{62.46}{100} = 4746.96 \text{ kN}$$

$$\approx 4747 \text{ kN}$$

25. (c)

$$k_a = \frac{1-\sin\phi}{1+\sin\phi} = \frac{1-\sin 28^\circ}{1+\sin 28^\circ} = 0.36$$

Increase in active earth pressure,

$$\Delta p_a = k_a q = 0.36 \times 25 = 9 \text{ kN/m}^2$$

Increase in total active thrust,

$$\Delta P_a = \Delta p_a h = 9 \times 6$$

= 54 kN/m length of the wall

26.

When the infinite slope is subjected to full depth seepage (submerged condition)

Factor of safety,
$$F = \frac{c' + \gamma' H \cos^2 \beta \tan \phi}{\gamma_{\text{sat}} H \cos \beta \sin \beta}$$

Here, F = 1 and $H = H_c$

$$H_{C} = \frac{c'}{\cos^{2}\beta(\gamma_{sat}\tan\beta - \gamma'\tan\phi')}$$

$$= \frac{10}{\cos^{2}18^{\circ}\{17 \times \tan 18^{\circ} - (17 - 9.81)\tan 14^{\circ}\}} = 2.96 \text{ m}$$

27. (c)

For rectangular footing,

$$q_u = \left(1 + 0.3 \frac{B}{L}\right) cN_c + \gamma D_f N_q + \left(1 - 0.2 \frac{B}{L}\right) \frac{1}{2} \gamma B N_{\gamma}$$

∵ For sand,

$$c = 0$$

$$q_u = 19 \times 2 \times 25 + \left(1 - 0.2 \times \frac{2}{3}\right) \times \frac{1}{2} \times 19 \times 2 \times 18$$

$$= 950 + 296.4$$

$$= 1246.4 \text{ kN/m}^2$$

28. (b)

$$c' = 13 \text{ kN/m}^2$$
, $\phi' = 30^\circ$
 $\overline{\sigma}_{3f} = 50 \text{ kN/m}^2$

Compressive strength = $\bar{\sigma}_{1f} - \bar{\sigma}_{3f}$

We know that

$$\bar{\sigma}_{1f} = \sigma_{3f} \tan^2 \left(45^\circ + \frac{\phi'}{2} \right) + 2c \tan \left(45^\circ + \frac{\phi'}{2} \right)$$

$$= 50 \tan^2 \left(45^\circ + \frac{30^\circ}{2} \right) + 2c \tan \left(45^\circ + \frac{30^\circ}{2} \right)$$

$$= 50 \times \left(\sqrt{3} \right)^2 + 2 \times 13 \times \sqrt{3}$$

$$\approx 195 \text{ kN/m}^2$$

 \therefore Compressive strength = $\bar{\sigma}_{1f} - \bar{\sigma}_{3f}$

$$= 195 - 50 = 145 \text{ kN/m}^2$$

29. (a)

This is the distribution of deformation for sand in case of flexible footing.