- C	LAS	S TE	ST -			S	.No. : ()1 JP_CE_09	082022
	Delhi	Ir Bhopal H	ndia's Be yderabad	est Institu	ITE for	E P C	& PSU paneswa	S r Kolkata P	atna
		Web: www	v.madeeasy	v.in E-mai	il: info@	madeeasy.in	Ph: 011	-45124612	
			Sl	JRV	/E	YIN	G		
			CIV	IL EN	IGI	NEERII	١G		
			Dat	te of Tes	st:0	9/08/20	22		
AN	SWER	KEY >							
1.	(b)	7.	(c)	13.	(b)	19.	(a)	25.	(a)
2.	(a)	8.	(c)	14.	(b)	20.	(b)	26.	(a)
3.	(b)	9.	(a)	15.	(a)	21.	(c)	27.	(b)
4.	(a)	10.	(d)	16.	(c)	22.	(c)	28.	(b)
5.	(a)	11.	(c)	17.	(b)	23.	(a)	29.	(b)
6.	(c)	12.	(b)	18.	(c)	24.	(b)	30.	(a)

DETAILED EXPLANATIONS

1. (b)

The refraction error can not be fully eliminated as there is always a possibility that the atmospheric conditions may get changed during shifting from one location to another.

3. (b)

There is no use of Intermediate sight

Fall in elevation = Σ Foresight – Σ Backsight $= 0.388 \,\mathrm{m}$ R.L. of first station – Fall in elevation = R.L. of last station R.L. of First station = 124.238 m = 1242.38 decimeter·.

4. (a)

R.L. of the under side of Tee-beam = R.L. of the floor + Staff reading + Staff reading held upside down

106.4 = 100.782 + 2.32 +Staff reading held upside down \Rightarrow

11

:. Staff reading held upside down = 3.3 m

5. (a)

True difference of level between A and B

	H =	$\frac{(h_b-h_a)+(h_b'-h_a')}{2}$
where,	$h_b =$	reading on staff at B when instrument at A
	$h_a =$	reading on staff at A when instrument at A
	h_b' =	reading on staff at ${\sf B}$ when instrument at ${\sf B}$
	h'_a =	reading on staff at A when instrument at ${\sf B}$
\Rightarrow	H =	0.61 m
<i>.</i>	R.L. of B =	R.L. of $A - H$
	=	125.88 m

8. (c)

Temporal resolution refers to the precision of a measurement with respect to time in which, observations are made over the same area on different datas. This is useful during crop growth, deforestation, floods etc.

9. (a)

B 150m

200m

А

215° 30′

- 305° 30′

F

$$\tan \angle PAB = \frac{150}{200} = \frac{3}{4}$$

$$\Rightarrow \qquad \angle PAB = 36.87^{\circ}$$

$$\angle APC = 305^{\circ} 30' - 215^{\circ} 30' = 90^{\circ}$$

$$\therefore \qquad \angle ACP = 180^{\circ} - \angle PAB - \angle APC$$

$$= 53.13^{\circ} = \angle BCP$$

$$\therefore \qquad BC = \frac{PB}{\tan \angle BCP} = 112.5 \text{ m}$$

13. (b)

Let the multiplying and additive constants of the tacheometer be *K* and *C* respectively.

For 20 m distance, 20 = K(0.198) + C ...(i) For 100 m distance, 100 = K(0.998) + C ...(ii) From equation (i) and (ii), K = 100 and C = 0.2 m

$$\frac{K}{C} = 500$$

14. (b)

Length of long chord,
$$T_1 T_2 = 2 R \sin(\Delta/2)$$

$$= 2 \times 600 \times \frac{\sin(\frac{120}{2})}{(\therefore \Delta = 120^\circ)}$$

$$= 1039.2 \text{ m}$$
Length of mid-ordinate, $M = R[1 - \cos(\Delta/2)]$

$$= 600[1 - \cos(120/2)]$$

$$= 600 \times 1/2 = 300 \text{ m}$$

15. (a)

Volume =
$$h \left[\frac{A_1 + A_n}{2} + A_2 + A_3 + A_4 \right]$$

= $5 \left[\frac{60 + 1000}{2} + 180 + 330 + 650 \right]$
= 8450 ha-m

16. (c)

Let the length and bearing of line EA is 'l' and ' θ ' respectively In a closed traverse,

Σ Lattitudes =	0 and Σ Departures = 0	
Considering, Σ Lattitudes =	0	
\Rightarrow 204 cos 87°30′ +	226 $\cos 20^{\circ}20' + 187 \cos 280^{\circ} + 192 \cos 210^{\circ}3' + l \cos \theta = 0$	
$\Rightarrow l\cos\theta =$	– 87.09 m(i))
Considering, Σ Departures =	0	
\Rightarrow 204 sin 87°30′ +	226 sin 20°20' + 187 sin 280° + 192 sin 210°3' + $l \sin \theta = 0$	
$\Rightarrow l\sin\theta =$	–2.03 m(ii))
$\Rightarrow l^2 \sin^2 \theta + l^2 \cos^2 \theta =$	$(2.03)^2 + (87.09)^2$	
:. <i>l</i> =	87.11 m	

17. (b)

 $s = (4.86)^2 = x^2 \qquad (\text{where } x = 4.86)$ $\Rightarrow \qquad \delta s = 2x \delta x$ Maximum error in the individual measurement is 0.005 $\therefore \qquad \delta s = 2(4.86)(0.005) = 0.0486$

18. (c)

As tape is pulled under a standard pull of 180 N, so there will be no pull (tension) correction Only sag correction is applicable

Sag correction =
$$\frac{W^2 l}{24P^2} = \frac{(30)^2 \times 100}{24 \times 180^2} = 0.116 \text{ m}$$

:. Corrected distance between end of tapes = 100 - 0.116 = 99.884 m

19. (a)

Given: $L_1 = 10$ km, $L_2 = 10$ km

Number of photograph in each length strip = $\frac{L_1}{(1-P_l)sl} + 1$

$$= \frac{10000}{(1-0.6)\times20\times100} + 1 = 13.5 \simeq 14$$

Number of photograph in width strip = $\frac{L_2}{(1-P_s)sw} + 1$

$$= \frac{10000}{(1-0.3)\times100\times20} + 1 = 8.14 \simeq 9$$

India's Beet Institute for IEB, GATE & PSUs

20. (b)

Mean value,
$$\overline{x} = \frac{\sum \text{observation}}{10} = 100.448 \text{ m}$$

Standard deviation of the mean =
$$\sqrt{\frac{\sum (x - \overline{x})^2}{n(n-1)}} = 0.025 \text{ m} = 2.5 \text{ centimeter}$$

21. (c)

Least count for an extended vernier = $\frac{\text{Smallest division of the main scale (s)}}{\text{Number of divisions of the vernier (n)}}$

 $10'' = \frac{10'}{n}$ n = 60

÷

 \Rightarrow

For an extended vernier

'n' division of vernier should be equal to '(2n - 1)' divisions of main scale ∴ M = 2n - 1 = 119 and N = n = 60

where, s is staff intercept.

22. (c)

Horizontal distance, $D = Ks \cos^2 \theta + C \cos \theta$

 \Rightarrow

 \Rightarrow

 $\delta D = -\frac{f}{i^2} s \cos^2 \delta i + 0$ $\delta D = -\frac{K}{i} s \cos^2 \theta \delta i$ $= -\frac{100}{0.25} s \cos^2 10^\circ \times 0.0025 \qquad \qquad \left[i = \frac{f}{K} = 0.25 \, \text{cm} \right]$

23. (a)

At noon, the sun is exactly on the geographical meridian.

= -0.97s

Hence, the true bearing of the sun at noon is zero or 180° depending upon whether it is to the North of the place or to the South of the place.

Since the magnetic bearing of the Sun is 351°20′, it is at the North of the place and hence the true bearing of the sun, which is on the meridian, will be 360°.

- :. True bearing = Magnetic bearing + Declination
- \Rightarrow 360° = 351°20′ + Declination
- \therefore Declination = +8°40′ = 8°40′ E

12 Civil Engineering

24. (b)

As the Fore Bearing and Back Bearing of line EA differ exactly by 180°, stations E and A are free from local attraction. Therefore, the Fore Bearing of AB and Back Bearing of DE are also free from local attraction. **First Method**:

As there is no local attraction at E, the computed B.B. of DE is equal to the observed bearing.

25.	(a)
	H.I. at point 5 = R.L. of C + Foresight at point C = 197.82 m
	R.L. of point 5 = H.I. at point 5 – Backsight at point 5 = 193.49 m
	H.I. at point 2 = R.L. of point 3 + 5.39 = 197.01 m
	R.L. of point $2 = H.I.$ at point $2 - 3.91 = 193.1$
	R.L. of point 4 = H.I. at point 2 – 4.73 = 192.28 m
	R.L. of $B = H.I.$ at point 2 – (–6.29) = 203.30 m
	H.I. at $A = R.L.$ of point 2 + 6.52 = 199.62
	R.L. of $A = H.I.$ at $A - 4.39 = 195.23$ m
26	
20.	(a) Let the length of line BC and DE be L and L
	$\sum 1$ attitude – O(for a closed traverse)
	$\Rightarrow 500 \cos 98^{\circ}30' + 1 \cos 30^{\circ}20' + 468 \cos 298^{\circ}30' + 1 \cos 230^{\circ} + 274 \cos 150^{\circ} = 0$
	$\Rightarrow \qquad 0.863 l_{2} - 0.643 l_{2} = 87.88 \qquad (i)$
	Σ Departure = 0 (for a closed traverse)
	\Rightarrow 500 sin 98°30′ + l_{2} sin 30°20′ + 468 sin 298° 30′ + l_{2} sin 230° + 274 sin 150° = 0
	\Rightarrow 0.505 $l_1 - 0.766 l_2 = -220.22$ (ii)
	Solving equation (i) and (ii)
	$l_1 = 621.14 \mathrm{m}, \qquad l_2 = 697.0 \mathrm{m}$
07	
27.	(D) $n = 10$
	V = 10
	Distance between staff and instrument
	$D = 100 \mathrm{m}$
	$\alpha = \frac{S}{100000000000000000000000000000000000$
	nD 10×100
	- 180 -
	$\alpha = 5 \times 10^{-5} \times \frac{100}{\pi} = 2.8647 \times 10^{-3}$ degree
	- 0°0′ 10 31″
	$= 10.31 \sec of arc$
~~	
28.	(D) (-82.96, 141.82)
	$\tan \theta = \frac{141.82}{20.00} = 1.7095^{\circ}$
	\therefore $\theta = \tan^{-1}(1.7095) = 59.674^{\circ}$ $W < E$
	WCB = $270 + \theta = 270 + 59.674 = 329.674^{\circ}$
	= $329.674 \times \pi$ rad = 5.75 rad
	Y Contraction of the second
	S

29. (b)

30. (a)

Average scale of photograph

$$= \frac{f}{H - h_{avg}}$$

$$h_{avg} = \frac{1}{4} (1250 + 1650 + 1486 + 1501) = 1471.75 \text{ m}$$
Average scale = $\frac{0.160}{3200 - 1471.75} = \frac{0.16}{1728.25}$

$$= \frac{1}{10801.56} \simeq \frac{1}{10802}$$