D										
	EESE MADE EASE India's Best Institute for IES, GATE & PSUs									
	Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
Е	NVI	20		EN	ΤЕ	NGI	NE	ERIN	IG	
			CIVIL							
						08/202				
	VER KEY									
		7.	(c)	13.	(b)	19.	(a)	25.	(a)	
		8.	(b)	14.		20.		26.		
		9.	(a)		(d)	21.		27.		
		10.		16.		22.		28.		
		11.		17.		23.		29.		
		12.			(c)	24.		30.		

Environment Engineering

DETAILED EXPLANATIONS

 $BOD_5 = (Initial DO - Final DO) \times Dilution factor$

$$= (9.36 - 6.2) \times \frac{100}{2.5} = 126.4 \text{ mg/}l$$

4. (a)

$$L = \frac{(0.5 \text{ m}^3/\text{s}) \times (86400 \text{ s}/\text{d})}{150 \text{ m}^3/\text{day/m}} = 288 \text{ m}$$

5. (b)

 \Rightarrow

$$(100 - P_1) V_1 = (100 - P_2) V_2$$
$$\frac{V_2}{V_1} = \frac{100 - P_1}{100 - P_2}$$
$$= \frac{100 - 97}{100 - 95} = \frac{3}{5} = 0.6$$

So, decrease in volume by 40%.

7. (c)

The drop manholes are provided in sewerage system when there is change in elevation of ground level.

10. (c)

Sound pressure level (dB) = $20\log_{10}\left(\frac{P}{P_0}\right)$

where P is sound pressure in N/m²

and P_{0} is reference pressure (= 2 × 10^{-5} N/m^2 or 20 $\mu\mathrm{Pa})$

For given sound pressure, P = 3000 μ bar = 300 N/m²

$$\left[\because 1 \text{ bar} = 1 \times 10^5 \text{ Pa} = 1 \times 10^5 \text{ N/m}^2 \right]$$

:. Sound pressure level =
$$20\log_{10}\left(\frac{300}{2 \times 10^{-5}}\right) = 143.52 \text{ dB}$$

11. (d)

Statement-1 : Raw sludge is more objectionable in comparison to secondary sludge because it has more putrescible organic matter.

Statement-3: Secondary sludge from trickling filter has solid content (2-4)% and activated sludge process has solid content of (1-2)%.

12. (b)

For SO₂

Minimum height of chimney = 14 $(Q_s)^{1/3}$ m

$$Q_s = SO_2 \text{ emission in kg/hr}$$

$$Q_s = 0.72 \text{ tonnes/day}$$

$$= 720 \text{ kg/24 hr}$$

$$= 30 \text{ kg/hr}$$
So, Height of chimney = 14 (30)^{1/3}

$$= 43.5 \text{ m}$$

13. (b)

Statement 2 and 3 are the properties of iron salts not alum salts.

15. (d)

Velocity of sand particles,

 $V'_{s} = \frac{g}{18} (G-1) \frac{d^{2}}{v}$ ⇒ $V'_{s} = \frac{9.81}{18} \times (2.65-1) \times \frac{(0.01 \times 10^{-3})^{2}}{10^{-3} / 1000}$ ⇒ $V'_{s} = \frac{9.81}{18} \times 1.65 \times 10^{-4}$ ⇒ $V'_{s} = 8.9925 \times 10^{-5} \text{ m/s}$ Setting time = $\frac{\text{Volume of tank}}{\text{Water flow rate}}$ = $\frac{900 \times 3}{8000} \text{ days} = \frac{2700}{8000} \times 24 = 8.1 \text{ hours}$ Settling velocity, $V_{s} = \frac{\text{Depth of tank}}{\text{Settling time}}$ = $\frac{3}{8.1 \times 3600} = 1.0288 \times 10^{-4} \text{ m/s}$ ∴ Removal efficiency = $\frac{V'_{s}}{V_{s}} \times 100$ = $\frac{8.9925 \times 10^{-5}}{1.0288 \times 10^{-4}} \times 100 = 87.41\%$

16. (a)

Recirculation factor,
$$F = \frac{1 + R/I}{\left(1 + \frac{0.1R}{I}\right)^2} = \frac{1 + 1.5}{\left(1 + 0.1 \times 1.5\right)^2} = 1.89$$

Efficiency of filter, $\eta = \frac{100}{1 + 0.0044\sqrt{\frac{Y}{V \times F}}}$

(where V = 0.12 ha.m)

India's Beet Institute for IES, GATE & PSUs

 \Rightarrow

 \Rightarrow

$$80 = \frac{100}{1 + 0.0044 \sqrt{\frac{Y}{0.12 \times 1.89}}}$$
$$Y = 732.18 \text{ kg/day}$$

17. (c)

Velocity gradient, $G = \sqrt{\frac{P}{\mu V}}$

Power input per unit volume,

$$P = \mu G^{2}V$$

= 1 × 10⁻³ × (450)² × 4
= 810 W

Now, power input per unit volume = $\frac{P}{V} = \frac{810}{4} = 202.5 \text{ W/m}^3$

18. (c)

Sound pressure,

$$L = 20 \log_{10} \left(\frac{P_{\text{rms}}}{20 \mu \text{Pa}} \right) \text{dB}$$
$$L = 20 \log_{10} \frac{2000}{20}$$
$$= 20 \log_{10} 100$$

So, resultant of two sound sources of 40 dB and 40 dB = 43 dB

=

19. (a)

For Infiltration gallery,

$$Q = kL\left(\frac{H^2 - h^2}{2R}\right)$$

where,
$$Q = 600 \text{ m}^3/\text{day}$$
$$H = 6 \text{ m}, k = 100 \text{ m}/\text{day}$$
$$R = 100 \text{ m}$$
$$h = 6 - 4 = 2 \text{ m}$$
$$\therefore \qquad 600 \text{ m}^3/\text{day} = 100 \text{ m}/\text{d} \times L \text{ (in m)} \times \left(\frac{6^2 - 2^2}{2 \times 100}\right) \frac{\text{m}^2}{\text{m}}$$
$$\Rightarrow \qquad 600 = \left(100 \times L \times \frac{32}{200}\right)$$
$$\Rightarrow \qquad L = 37.5 \text{ m}$$

21. (b)

Required chlorine dose = Chlorine demand + Residual chlorine

= 1.28 + 0.22 = 1.5 mg/l

:. Total chlorine required per day

 $= 1.5 \times 10^{-6} \times 6.4 \times 10^{6} = 9.6 \text{ kg}$

Available chlorine in bleaching powder = 20%

: Bleaching powder required

$$=\frac{9.6}{0.20}=48$$
 kg

22. (a)

	$N = N_0 10^{kt}$	(I st order reaction)
.:.	$10^9 = 10^3 \ (10)^{k \times 10}$	
\Rightarrow	$10^6 = (10)^{10k}$	
\Rightarrow	k = 0.6	
Now,	$N = 2N_0$	
:	$2 = 10^{0.6t}$	
\Rightarrow	t = 0.5 hr	

23. (b)

Sewage produced = 400000 l/day 5-day BOD of sewage = 140 mg/l (: When water is solvent, 1 ppm = 1 mg/l) BOD of effluent = 15 ppm =15 mg/l : BOD removed by pond = (140 - 15) = 125 ppm = 125 mg/l : Sewage produced per day = 400000×125 = 50×10^6 mg = 50 kg Organic loading rate = 25 kg/ha/day : Required area = $\frac{\text{Sewage produced}}{\text{Organic loading rate}}$

$$=\frac{50}{25}=2$$
 ha

24. (c)

Hardness is due to multivalent cations.

$$\therefore \qquad \text{Total hardness} = \left[Mg^{+2} \right] \times \frac{\text{Eq. weight of } CaCO_3}{\text{Eq. weight of } Mg^{2+}} + \left[Ca^{+2} \right] \times \frac{\text{Eq. weight of } CaCO_3}{\text{Eq. weight of } Ca^{2+}}$$

+
$$[Al^{3+}] \times \frac{\text{Eq. weight of CaCO}_3}{\text{Eq. weight of Al}^{3+}}$$

$$= 48 \times \frac{50}{12} + 45 \times \frac{50}{20} + 5 \times \frac{50}{9} = 340.28 \text{ mg/}l \text{ as CaCO}_3$$

25. (a)

Total no. of cigarettes consumed per hour = $50 \times 1.3 = 65$

Total formaldehyde produced per hour = $65 \times 1.3 = 84.5$ mg

This 84.5 mg of formal dehyde provide per hour gets mixed with 1300 m³/hr of fresh air injected into the room.

Hence concentration of formaldehyde in the room air = $\frac{84.5}{1300}$ = 0.065 mg/m³

26. (c)

Flow rate,	$Q_0 = 800 \text{ m}^3/\text{hr}$
Influent BOD,	$S_0 = 125 \text{ mg}/l$
Effluent BOD,	S = 10 mg/l
Hydraulic retention time	= 7.5 hr = 0.3125 days

Mean-cell residence time, HRT $\theta_c = 300 \text{ hr} = \frac{300}{24} \text{ days} = 12.5 \text{ days}$

MLSS (X) = 3000 mg/l
Volume = 500 m³
Food (F) = QS₀

$$= \left(800 \frac{\text{m}^3}{\text{hr}}\right) \left(125 \frac{\text{mg}}{l}\right) = 2400 \text{ kg/day}$$
Biomass (M) = VX

$$= (500 \text{ m}^3) \left(3000 \frac{\text{mg}}{l}\right)$$

$$= 1500 \text{ kg}$$

$$\frac{F}{M} = \frac{Q_0 S_0}{VX} = \frac{2400}{1500}$$

$$= 1.6 \text{ kg BOD day/kg MLSS}$$

:.

27. (c)

From place A to B,

Ambient lapse rate =
$$\frac{21 - 18.5}{350 - 45} \times 1000 = 8.197 < 9.8^{\circ}C/km$$

Since lapse rate is less than the adiabatic lapse rate, so ambient lapse rare is said to be subadiabatic. From B to C,

Ambient lapse rate = $\frac{18.5 - 14}{500 - 350} \times 1000 = 30^{\circ}C/km > 9.8^{\circ}C/km$

So lapse rate is superadiabatic.

28. (c)

Solid content = 3.5%

$$\therefore$$
 Water content = 100 - 3.5 = 96.5%
 $\frac{100}{S_{sludge}} = \frac{96.5}{1} + \frac{3.5}{2.4}$
 \Rightarrow $S_{sludge} = 1.02084$
 \therefore $\rho_{sludge} = 1.02084 \times 1000$
 $= 1020.84 \text{ kg/m}^3$

After sludge gets thickened,

$$\frac{V_1}{2} = \frac{(100 - 96.5)}{(100 - P_2)} \times V_1$$

 $V_2 = \frac{V_1}{2}$

 $V_2 = \frac{(100 - P_1)}{(100 - P_2)} \times V_1$

 $\Rightarrow \qquad 100 - P_2 = 200 - 193.0$

$$\Rightarrow$$
 100 - P₂ = 7

$$\Rightarrow$$
 P₂ = 93%

 $\therefore \qquad \text{Solid content} = 100 - 93 = 7\%$

30. (d)

....

 \Rightarrow

The field capacity of munipal solid waste is the total moisture that can be retained in a waste sample against gravity.

####