CLASS TEST

						S.No	b.: 05	G1_CE_F_0	50719
							Soil	Mechanics	
	made Ersy								
India's Best Institute for IES, GATE & PSUs									
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	LLASS IESI								
	2019-2020								
			CIVIL	. EN	GIN	EERIN	IG		
Data of Toot + 05 (07 (2010									
Date of 1est: 05/07/2019									
ANSWER KEY > Soil Mechanics									
1.	(b)	7.	(b)	13.	(b)	19.	(b)	25.	(d)
2.	(a)	8.	(d)	14.	(d)	20.	(a)	26.	(c)

1.	(b)	7.	(b)	13.	(b)	19.	(b)	25.	(d)
2.	(a)	8.	(d)	14.	(d)	20.	(a)	26.	(c)
3.	(a)	9.	(c)	15.	(d)	21.	(c)	27.	(c)
4.	(a)	10.	(a)	16.	(b)	22.	(b)	28.	(c)
5.	(b)	11.	(b)	17.	(a)	23.	(b)	29.	(b)
6.	(b)	12.	(a)	18.	(a)	24.	(c)	30.	(a)

6 Civil Engineering

DETAILED EXPLANATIONS

1. (b)

Water table correction in SPT is given by

$$N = 15 + \frac{1}{2}(N' - 15) = 15 + \frac{1}{2}(32 - 15)$$

= 15 + 8.5 = 23.5

Corrected SPT value =
$$23$$

2. (a)

.:.

...

$$k \propto D_{10}^2$$

 $\frac{k_1}{k_2} = \frac{(D_{10})_1^2}{(D_{10})_2^2} = \frac{(0.6)^2}{(0.3)^2} = 4$

3. (a)

$$C_{C} = \frac{D_{30}^{2}}{D_{60}D_{10}} \text{ and } C_{u} = \frac{D_{60}}{D_{10}}$$
$$\frac{D_{30}}{D_{10}} = \sqrt{C_{C}C_{u}} = \sqrt{1.5 \times 6} = 3.00$$

4. (a)

...

$$h = \frac{4\sigma}{\gamma d} = \frac{4 \times 0.073}{9.81 \times 0.05} (\because \text{ Surface tension for water, } \sigma = 0.073 \text{ N/m})$$

$$h = 0.62 \text{ m}$$

Capillary tension $= h \cdot \gamma_w$
 $= 0.62 \times 9.81 = 6.1 \text{ kN/m}^2$

5. (b)

:..

Given
$$\frac{\mu_1}{\mu_2} = 1.5$$
 and $\frac{1-\mu_1}{1-\mu_2} = 0.9$
 $\therefore \qquad \frac{K_1}{K_2} = \left(\frac{\mu_1}{1-\mu_1}\right) \times \left(\frac{1-\mu_2}{\mu_2}\right)$
 $= \frac{1.5}{0.9} = 1.666$

6. (b)

Exit gradient =
$$\frac{\text{Potential drop in last field}}{\text{Length of flow line of last square}} = \frac{18 / 12}{2} = 0.75$$

7. (b)

It is a coarse-soil, as only 7% are finer than 75 micron sieve. It is a sandy soil because more than 50% of the coarse fraction passes through 4.75 mm sieve.

Size of aggregates varies linearly

To calculate D₆₀

$$\frac{80-7}{4.75-0.075} = \frac{80-60}{4.75-D_{60}}$$

To calculate D₃₀

 \Rightarrow

 \Rightarrow

 \Rightarrow

$$\frac{80-7}{4.75-0.075} = \frac{80-30}{4.75-D_{30}}$$

Similarly,

$$\Rightarrow \text{ Uniformity Coefficient} \qquad C_u = \frac{D_{60}}{D_{10}} = 12.99 > 6$$

and Coefficient of curvature C_c

$$D_{\rm D} = \frac{D_{30}^2}{D_{60} \times D_{10}} = 2.59$$

- $\Rightarrow 1 < C_c < 3$
- :. The soil is well graded and finer particles are non-plastic, so it is silt.
- :. It is SW SM

8. (d)

As we know the relation,

$$\Rightarrow$$

$$s_f = 12 \left[\frac{300}{30} \left(\frac{30+30}{300+30} \right) \right]$$

 $s_f = 39.67 \, \text{mm}$

 $\frac{S_f}{S_p} = \left[\frac{B_f}{B_p}\left(\frac{B_p + 30}{B_f + 30}\right)\right]^2$

9. (c)

:..

For 50% consolidation, the value of time factor (T_v) will be same for both soils.

$$T_{v} = \frac{C_{v_1}t_1}{(d_1)^2} = \frac{C_{v_2}t_2}{(d_2)^2}$$

where,

$$d_1 = \frac{d}{2}$$
$$d_2 = d$$
$$t_1 = 6 \text{ months}$$

 $C_{v_2} = 2C_{v_1}$

$$\Rightarrow \qquad \qquad \frac{C_{v_1} \times 6}{(d/2)^2} = \frac{2C_{v_1} \times t_2}{(d)^2}$$

$$\therefore \qquad \qquad t_2 = 12 \text{ months}$$

10. (a)

 $\phi'=28^\circ,\,\gamma_{sat}=$ 19 kN/m³, $F=3,\,\beta=?,\,\gamma'=$ 19 – 10 = 9 kN/m³ As we know that,

Factor of safety =
$$\frac{\gamma' \tan \phi'}{\gamma_{sat} \tan \beta}$$

$$\Rightarrow \qquad 3 = \frac{9 \times \tan 28^{\circ}}{19 \times \tan\beta}$$

$$\Rightarrow \qquad \qquad \tan \beta = 0.08395$$

$$\therefore \qquad \beta = 4.80^{\circ}$$

11. (b)

Shrinkage Ratio =
$$\frac{\left(\frac{V_L - V_d}{V_d}\right) \times 100}{\left(W_L - W_s\right)} = \frac{\left(\frac{10 - 6}{6}\right) \times 100}{\left(50 - 15\right)} = 1.905\%$$

12. (a)

$$K_{x} = \frac{Zk + Z\frac{k}{3} + Z\frac{k}{2} + Z2k}{4Z} = \frac{23}{24}k$$

$$K_{z} = \frac{4Z}{\frac{Z}{k} + \frac{3Z}{k} + \frac{2Z}{k} + \frac{Z}{2k}} = \frac{8}{13}k$$

13. (b)

Soil A - 1 kg

$$W_C = 100\%$$
 \therefore
 $W_S = 500 \text{ gm}$
 $W_W = 500 \text{ gm}$

 Soil B - 1 kg
 $W_C = 50\%$
 \therefore
 $W_S = 666 \text{ gm}$
 $W_W = 333 \text{ gm}$

 Water content of mixed soil
 $= \frac{\text{Wt. of water}}{\text{Wt. of soil solid}} = \frac{500 + 333}{500 + 666} = 0.7144 \text{ or } 71.44\%$

14. (d)

- 1. Zone 1 : Makes an angle of ϕ with horizontal
- 2. Zone 2 : It remains in plastic equilibrium

3. Zone 3 : Makes an angle of $\left(45^{\circ} - \frac{\phi}{2}\right)$ with horizontal

CT-2019 | CE · Soil Mechanics 9

India's Best Institute for IES, GATE & PSUs

15. (d)

Utimate bearing capacity is given by Circular footing:

$$Q_{uc} = 1.3 cN_c + \gamma D_f N_q + 0.3 b\gamma N_{\gamma}$$
Square footing:

$$Q_{us} = 1.3 cN_c + \gamma D_f N_q + 0.4 b\gamma N_{\gamma}$$
C = 0
For footing on surface of soil:

$$D_f = 0$$

$$D_f = 0$$

$$\frac{Q_{uc}}{Q_{us}} = \frac{0.3}{0.4} = 0.75$$

- 16. (b)
- 17. (a)

$$c_u = 100/2 = 50 \text{ kN/m}^2$$
Ultimate bearing capacity of single = $\alpha c_u (\pi D)L$ (Neglecting End Bearing)
= $0.8 \times 50 \times (\pi \times 0.5) \times 15$
= 942.5 kN

18. (a)

$$A_t = \frac{I_P}{C}$$

where,	$C =$ Fraction of clay particles = $\frac{0.34}{1.5}$
	$I_P = 0.6 - 0.26 = 0.34$
ж.	$A_t = \frac{(0.6 - 0.26)}{(0.34 / 1.5)} = 1.5$

19. (b)

$$T_{V} = \frac{C_{V}t}{d^{2}} = \frac{\pi}{4}U^{2} \qquad \text{(For } U < 60\% \text{ consolidation)}$$

$$\therefore \qquad t \propto U^{2}$$

$$\frac{t}{178} = \left(\frac{60}{40}\right)^{2}$$

$$\therefore \qquad t = 400.5 \text{ days}$$

Extra time required = $400.5 - 178 = 222.5 \text{ days}$
20. (a)

$$w = \left[\frac{(M_{2} - M_{1})}{(M_{3} - M_{4})} \cdot \left(\frac{G - 1}{G}\right) - 1\right] \times 100$$

Where,

$$M_{2} - M_{1} = 1000 \text{ gm}$$

$$M_{3} = 2000 \text{ gm}$$

 $M_4 = 1480 \, \text{gm}$

21. (c)

$$\frac{D_f}{B} = \frac{1.2}{2.5} = 0.48 < 2.5$$

:. It is a shallow foundation

$$N_{c} = 6 \left[1 + 0.2 \left(\frac{D_{f}}{B} \right) \right]$$

$$= 6 \left[1 + 0.2 \times \frac{1.2}{2.5} \right] = 6.576$$

$$\therefore \qquad q_{nu} = cN_{c}$$

$$= 2.75 \times 6.576 \qquad \left(\because c = \frac{q_{u}}{2} = \frac{5.5}{2} = 2.75 \text{ t/m}^{2} \right)$$

$$= 18.084 \text{ t/m}^{2}$$

$$\therefore \qquad q_{s} = \left(\frac{q_{nu}}{\text{FOS}} \right) + \gamma D_{f}$$

$$= \frac{18.084}{3} + 1.8 \times 1.2 = 8.2 \text{ t/m}^{2}$$

22. (b)

Given:

$$e_0 = 0.85, e_f = 0.73, \Delta \sigma_0 = (2 - 1) \text{ kg/cm}^2 = 1 \text{ kg/cm}^2$$

 $\Delta e = (0.85 - 0.73) = 0.12, k = 3.3 \times 10^{-4} \text{ cm/sec}$

: Coefficient of volume change,

$$m_{v} = \frac{\Delta e}{(1+e_{0})} \times \frac{1}{(\Delta \sigma_{0})} = \frac{0.12}{(1+0.85)} \times \frac{1}{1}$$

 $m_{v} = 0.065 \text{ cm}^{2}/\text{kg}$

: Coefficient of consolidation,

$$C_v = \frac{k}{(m_v \gamma_w)} = \frac{3.3 \times 10^{-4}}{(0.065 \times 10^{-3} \times 1)} = 5.08 \text{ cm}^2/\text{sec}$$

23. (b)

As we know the relation,

$$\gamma_{d} = \frac{G\gamma_{w}}{1+e}$$
 $e_{1} = \frac{G\gamma_{w}}{\gamma_{d}} - 1 = \frac{2.65 \times 9.81}{16.65} - 1 = 0.56$

:.

Now,

MADE EASY

for IES, GATE & PSUe

$$V_1 = 2070 \text{ m}^3$$

 $e_2 = \frac{n}{1-n} = \frac{0.33}{0.67} = 0.493$

and,

$$\frac{V_1}{1+e_1} = \frac{V_2}{1+e_2}$$

$$\therefore \qquad V_2 = \frac{2070 \times (1.493)}{1.56} = 1981.1 \,\mathrm{m}^3$$

24. (c)

The horizontal distance between two points along the sand stratum = 21 m

Vertical distance between these two points = $\frac{21}{15}$ = 1.4 m

i

:. Actual length of sand sample between two points = $\sqrt{(21)^2 + (1.4)^2} = 21.047 \text{ m}$

Now, Q = kiA

where,

$$= \frac{H_L}{L} = \frac{3.5}{21.047}$$

$$Q = 5 \text{ litres per hour} = \frac{5000}{60 \times 60} \text{ cm}^3 / \text{sec}$$

(:: 1 litre = 1000 ml = 1000 cc)

 $A = 4 \text{ m depth} \times 1 \text{ m width}$ $A = 40000 \text{ cm}^2$

Substituting these values, we get

$$\Rightarrow \qquad \frac{5000}{60 \times 60} = k \left(\frac{3.5}{21.047}\right) \times 40000$$

$$\therefore \qquad k = 2.09 \times 10^{-4} \text{ cm/sec}$$

25. (d)

Effective stress at 5 m depth, $\overline{\sigma}_1 = \gamma_d \times 2.4 + \gamma_{sub} \times 2.6$

 $16.68 = \frac{2.7 \times 9.81}{1+e}$

using

$$\gamma_d = \frac{G \gamma_w}{1+e}$$

 \Rightarrow \Rightarrow

$$e = 0.588$$

$$\gamma_{sub} = \left(\frac{G-1}{1+e}\right)\gamma_{W} = \frac{2.7-1}{1+0.588} \times 9.81 = 10.5 \text{ kN/m}^3$$

...

$$\overline{\sigma}_1 = (16.68 \times 2.4 + 10.5 \times 2.6) = 67.33 \text{ kN/m}^2$$

The shear strength of the soil,

$$\tau_{f_1} = \bar{\sigma}_1 \tan \phi = 67.33 \times \tan 36^\circ = 48.92 \text{ kN/m}^2$$

MADE EASY t Instituts for IES, GATE & PSUs

Now water table rises upto ground level,

$$\overline{\sigma}_2 = \gamma_{sub} \times 5 = 10.5 \times 5 = 52.5 \text{ kN/m}^2$$

$$\tau_{f_2} = \overline{\sigma}_2 \tan\phi = 52.5 \times \tan 36^\circ = 38.14 \text{ kN/m}^2$$

Decrease in shear strength = $48.92 - 38.14 = 10.78 \text{ kN/m}^2$ *.*..

26. (c)

and,

The total active pressure at the base is given by

$$P_A = K_a \sigma_z + 3\gamma_w$$

Where,
$$\sigma_z = \gamma_{dry} \times 2.0 + \gamma_{sub} \times 3$$
$$P_A = 0.36 [15.79 \times 2.0 + 9.32 \times 3.0] + 3 \times 9.81$$
$$P_A = 50.86 \text{ kN/m}^2$$

27. (c)

Bulk density,
$$\rho = \frac{1.855}{0.945 \times 10^{-3}} = 1962.96 \text{ kg/m}^3$$

Dry density,
$$\rho_d = \frac{\rho}{1+w} = \frac{1962.96}{1+0.16} = 1692.21 \text{ kg/m}^3$$

and

$$\rho_d = \frac{(1-\eta_a)G\rho_w}{1+wG}$$

$$\Rightarrow \qquad 1 - \eta_a = \frac{1692.21 \times (1 + 0.16 \times 2.68)}{2.68 \times 1000} = 0.9022$$

 $\eta_a = 0.0978 \text{ or } 9.78 \%$ *.*..

28. (c)

 $V = 10.7 \,\mathrm{m}^3$

29. (b)

 \Rightarrow

:..

Equivalent height of surcharge is,

 $z_e = \frac{q}{v} = \frac{36}{18} = 2 \text{ m}$

Thus the problem reduces to the calculation of active earth pressure due to height

$$z = H + z_e = 4 + 2 = 6 \text{ m}$$

$$k_a = \frac{1 - \sin\phi}{1 + \sin\phi} = \frac{1 - \sin 30^\circ}{1 + \sin 30^\circ} = \frac{1}{3}$$

The pressure intensity at the base of the wall is given as

$$p_a = k_a \gamma z = \frac{1}{3} \times 18 \times 6 = 36 \text{ kN/m}^2$$

The pressure intensity at the top of the wall is = $k_a \times q = \frac{1}{3} \times 36 = 12 \text{ kN/m}^2$

...(i)

....(ii)

The pressure distribution is thus trapezoidal, therefore magnitude of active earth pressure,

$$P = \frac{1}{2}(12+36) \times 4 = 96 \text{ kN/m}$$

The distance of point of application from the base is

$$\overline{z} = \frac{H}{3} \left(\frac{2a+b}{a+b} \right) = \frac{4}{3} \times \left(\frac{2 \times 12 + 36}{12 + 36} \right) = 1.67 \text{ m}$$

30. (a)

Original length of specimen, L = 9 cm

Initial cross-sectional area, $A_1 = \frac{\pi}{4} \times (4)^2 = 12.57 \text{ cm}^2$ Change in length at failure, $\Delta L = 1 \text{ cm}$

Area at failure,
$$A_2 = \frac{A_1}{1 - \frac{\Delta L}{L}} = \frac{12.57}{1 - \frac{1}{9}}$$

$$A_2 = 14.14 \,\mathrm{cm}^2$$

 $\therefore \qquad \text{Unconfined compressive strength, } q_u = \frac{\text{Failure load}}{A_2} = \frac{465}{14.14} = 32.88 \text{ N/cm}^2$ or $q_u = 328 \text{ kN/m}^2 \text{ or } 328 \text{ kPa}$ $\therefore \qquad \text{Shear strength, } c_u = \frac{q_u}{2} = \frac{328}{2} = 164 \text{ kPa}$