
1. (d)

2. (d)

3. (d)

4. (c)

5. (c)

6. (a)

7. (b)

8. (b)

9. (a)

10. (d)

11. (c)

12. (d)

13. (c)

14. (c)

15. (d)

16. (d)

17. (b)

18. (a)

19. (d)

20. (c)

21. (b)

22. (a)

23. (a)

24. (a)

25. (c)

26. (d)

27. (c)

28. (b)

29. (a)

30. (d)

ANSWER KEY

OPERATING SYSTEM
COMPUTER SCIENCE & IT

Date of Test : 09/09/2022

CLASS TEST

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

Sl. : 02_SK_BCDE_CS_090920

© Copyright :www.madeeasy.in

10 Computer Science & IT

DE TAILED EXPL ANATIONS

1 .1 .1 .1 .1 . (d)(d)(d)(d)(d)
(a) Round robin works on time quantum, after certain period of time every process gets the CPU unit for

its completion, hence it’s most suitable.
(b) Since OS is multiuser and multiprocessing, hence security is the primary concern so that user processes

and Kernel processes can be isolated.
Hence two modes are required.

(c) When CPU temperature is too high, the BIOS initiate an interrupt. OS given top priority to this interrupt.
(d) Address translation table need to be changed when switching context from process A to process B.

2 .2 .2 .2 .2 . (d)(d)(d)(d)(d)
• Switching between two user level threads only require procedure calls not context switching.
• All Kernal threads operations are implemented in Kernal, and OS schedules all threads in the system.
• Since user level threads are transport to Kernal, hence are not scheduled independently and hence

are not given independent time slice.
• Threads do share the code segment.

3 .3 .3 .3 .3 . (d)(d)(d)(d)(d)
Since 4 distinct page numbers are only to be accessed. Hence the best condition i.e., the condition with
minimum number of page faults will be accessing all those elements repeatedly that are in the frame
already, which will give maximum 4 page faults.
If, considered the worst case, it will be on every iteration, we are accessing the same element that has
been removed from the frame, which will give 52 page faults.

4 .4 .4 .4 .4 . (c)(c)(c)(c)(c)
1. CPU senses interrupt request line after every instruction.
2. Nearest cylinder next disk scheduling strategy gives the best throughput but the only problem is it

can lead to starvation.
3. Using large file block size in a fixed block size file system leads to better disk throughput but poor

disk space utilization.

5 .5 .5 .5 .5 . (c)(c)(c)(c)(c)
Access time: Access time: Access time: Access time: Access time: total time needed to access the data

Access time = seek time + rotational latency + data transfer time

Seek time:Seek time:Seek time:Seek time:Seek time: Time taken to move the head to the correct cylinder that contains desired sector.

Rotational latency:Rotational latency:Rotational latency:Rotational latency:Rotational latency: Time taken to move the head to the desired sector within the cylinder.

Data transfer time : Data transfer time : Data transfer time : Data transfer time : Data transfer time : Time taken to transfer the actual data.

6 .6 .6 .6 .6 . (a)(a)(a)(a)(a)
The value of Registers, Program counter and Stack pointers will be changed. Memory management
information does not change.

7 .7 .7 .7 .7 . (b)(b)(b)(b)(b)
• Contiguous file allocation results in external fragmentation because it could be the case that there are

many small unallocated fragments between files and they can’t be used to allocate a file whose size
is greater than the size of any fragment but less than total size of free space.

• Linked allocation supports sequential access to disk block but not random access.
• Linked allocation does not suffer from external fragmentation but contain internal fragmentation.
• In indexed file allocation, separate block is used for each file as an index to store only block pointers.

© Copyright : www.madeeasy.in

11• Operating SystemCT-2022 CS

8 .8 .8 .8 .8 . (b)(b)(b)(b)(b)
Considering each option of List-I
• Mutual exclusion can be solved by spooling everything.
• Hold and wait can be solved by requesting all the resources before hand.
• No preemption can be solved by taking request away.
• Circular wait can be solved by numbering the resources in some order.

9 .9 .9 .9 .9 . (a)(a)(a)(a)(a)
Linked allocation does not support direct access but indexed and contiguous allocation support direct
access.

10.10.10.10.10. (d)(d)(d)(d)(d)
• Scheme 1 protocol ensures that hold and wait condition never occurs in the system.
• Scheme 2 ensures that there will be preemption of resources that have already been allocated.
• Scheme 3 ensures the circular wait condition.

11.11.11.11.11. (c)(c)(c)(c)(c)
1. Computer () → p (mutex) → mutex = 0

p (Q) → Q = 0
2. Science () → p (Q) → process sleep
3. Computer () → p (R) → R = 0

v(Q) → Q = 1, science () awake
4. Science → p(Q); Q = 0; p(R) → process sleep
5. Computer → v(mutex) → mutex = 1

p(Q) → process sleep
Hence a deadlock.

12.12.12.12.12. (d)(d)(d)(d)(d)

X Y Z W
P
P
P
P
P

0

1

2

3

4

2
3
0
2
2

2
2
3
5
0

2
0
2
0
0

2
0
4
2
1

Since available is a 0 0 b, let’s suppose a takes value 2 and b takes the value 1.
Available = 2 0 0 1
P4 → Complete → Avail = (0000 + 6214) = 6214
P1 → Complete → Avail = (6214) – (3200) = (3014) + (3512) = (6526)
P0 → Complete → Avail = (6526) – (2222) = (4304) + (3242) = (7546)
P2 → Complete → Avail = (7546) – (0324) = (7222) + (2775) = (9, 9, 9, 7)
P3 → Complete → Avail = (9997) – (2502) = 7495
Hence, the system is in a safe state will value of a as 2 and value of b as 1.

13.13.13.13.13. (c)(c)(c)(c)(c)
Given function compare and swap is like test and set. Or, we can say that test and set is just a special
case of compare and swap, which maintain mutual exclusion and is deadlock free.

© Copyright :www.madeeasy.in

12 Computer Science & IT

14.14.14.14.14. (c)(c)(c)(c)(c)
• FCFSFCFSFCFSFCFSFCFS

1 3 5 6 9 14 18 19 33 50 72 1990

24 54
71 12

30
47

8
13

14

3

Total time = 47+30+27+12+54+71+13+8+14 = 276 msec

15.15.15.15.15. (d)(d)(d)(d)(d)
• The total size of address space in a virtual memory system is limited by the available secondary

storage.
• Best fit technique can also suffer from fragmentation.
• Locality of reference implies that the page reference being made by a process is likely to be the page

used in the previous page reference.
• In a system with virtual memory context switch includes extra overhead in switching of address

space.

16.16.16.16.16. (d)(d)(d)(d)(d)
The output is ‘TGE’. So, to print ‘T’, we must give a value of 1 to semaphore b and should block rest three
processes.
Now, process 3, after printing T, will give signal to semaphore a, which will wake up process 1 and will print
‘G’ and given signal to semaphore ‘b’ and ‘c’. On giving signal to semaphore ‘c’, process ‘2’ will get
awake. But ‘a’ should not be printed in the output hence ‘c’ should be given value ‘–1’.
Process 4 will also awake after process 3 on signal ‘a’, but it will again be blocked by wait (b).

17.17.17.17.17. (b)(b)(b)(b)(b)
Given code correctly implements mutual exclusion but producer and consumer may enter the deadlock.
Deadlock may occur; if consumer executes first down (mutex) and then down (full), consumer goes to
block mode. Now producer executes down (empty) and then down (mutex), producer goes to block mode.
Deadlock may occur due to the above executions when buffer is initially empty.

18.18.18.18.18. (a)(a)(a)(a)(a)
Mutual exclusion will always hold for these processes since only 1 process can enter the critical section at
a time. Consider a scenario where all the processes execute first step i.e. turn [i] = true, so for all the
process turn [i] will be true. Now, ‘if’ condition will be true for each process, so every process will sleep,
which will result in deadlock condition.

19.19.19.19.19. (d)(d)(d)(d)(d)
Considering each statements :
SSSSS1 1 1 1 1 ::::: With Kernel threads, a thread can block on a semaphore and the Kernel can run some other thread in

the same process. Consequently, there is no problem using semaphores. With user - level threads,
when one thread blocks on a semaphore, the Kernel thinks the entire process is blocked and does
not run it ever again. Consequently, the process fails.

 SSSSS2 2 2 2 2 ::::: It does not lead to race conditions (nothing is even lost), but it is effectively busy waiting.

© Copyright : www.madeeasy.in

13• Operating SystemCT-2022 CS

20.20.20.20.20. (c)(c)(c)(c)(c)
Page size = 8 KB ⇒ 13 bit offset

Number of frame bits = 32 – 13 = 19 bits
Page table entry = Valid + Translation (frame bits)

= 1 + Frame bits
= 1 + 19 = 20 bits

Page table size = 20 Mbytes
Number of pages = Number of page table entries

=
20 Mbytes

20 Bits
 = 8 M = 223 pages

∴ 23 bits needed for page and 13 bits offset
Length of virtual address = 23 + 13 = 36 bits.

21.21.21.21.21. (b)(b)(b)(b)(b)
(R1 R2 R3)

Total = (12 9 12)
Allocated = (10 8 11)

Available = (2 1 1)
P3 or P4 can satisfy its need.

Available = (2 1 1)
P3 → (5 4 3)

7 5 4
P1 or P2 or P3 can satisfy.
It implies more than one safe sequence exist in the system.

Process
Need

2

4

1

2

2

1

0

0

1

0

0

0

P1

P2

P3

P4

R1 R2 R3

22.22.22.22.22. (a)(a)(a)(a)(a)
Only triple indirect blocks are responsible for maximum file size.

Max size =
  ×  

3DB size DB size
DBA

=
 

× 
 

3
4KB 4KB
4 B =

 
× 

  

3122 B
4 KB

4B

= [210]3 × 4 KB = 230 × 210 × 4 B
= 4 × 240 B
= 4 TB

© Copyright :www.madeeasy.in

14 Computer Science & IT

23.23.23.23.23. (a)(a)(a)(a)(a)
• Given policy is one of the deadlock prevention policy so, deadlock not possible since cycle cannot be

possible.
• Starvation is possible, consider the following case:

R1

R3

R2

R4

P1

P3

P2

P4

Pn

Since every process request for resource R3, it might be the case process 1 get starve.

24.24.24.24.24. (a)(a)(a)(a)(a)
Size of virtual addresses = 48 bits

Page size = 8 KB
Page offset = 213 = 13 bits

Number of bits used for indexing = 48 – 13 = 35 bits

Number of set =
256
4

 =
8

2

2

2
 = 26 = 64 require 6 bits

Total tag bits = 35 – 6 = 29 bits.

25.25.25.25.25. (c)(c)(c)(c)(c)
For variable ‘a’ :
I. (i) a = 2

(ii) a = 2 + 6 = 8
SequenceSequenceSequenceSequenceSequence ===== {1, 2, 3, 4} or {1, 3, 2, 4}{1, 2, 3, 4} or {1, 3, 2, 4}{1, 2, 3, 4} or {1, 3, 2, 4}{1, 2, 3, 4} or {1, 3, 2, 4}{1, 2, 3, 4} or {1, 3, 2, 4}

II. (iii) a = 0 + 6 = 6
(iv) a = 2

SequenceSequenceSequenceSequenceSequence ===== {3, 4, 2, 1}{3, 4, 2, 1}{3, 4, 2, 1}{3, 4, 2, 1}{3, 4, 2, 1}
Hence possible value are {2, 8}.
For variable ‘b’ :
I. (i) b = 0 + 2 = 2

(ii) b = 4
SequenceSequenceSequenceSequenceSequence ===== {1, 2, 3, 4}{1, 2, 3, 4}{1, 2, 3, 4}{1, 2, 3, 4}{1, 2, 3, 4}

II. (i) b = 4
(ii) b = 4 + 2 = 6

SequenceSequenceSequenceSequenceSequence ===== {3, 1, 2, 4} or {3, 4, 1, 2} or {1, 3, 2, 4}{3, 1, 2, 4} or {3, 4, 1, 2} or {1, 3, 2, 4}{3, 1, 2, 4} or {3, 4, 1, 2} or {1, 3, 2, 4}{3, 1, 2, 4} or {3, 4, 1, 2} or {1, 3, 2, 4}{3, 1, 2, 4} or {3, 4, 1, 2} or {1, 3, 2, 4}
III. (i) b = 4

(ii) b = 4 + 8 = 12
SequenceSequenceSequenceSequenceSequence ===== {3, 1, 4, 2}{3, 1, 4, 2}{3, 1, 4, 2}{3, 1, 4, 2}{3, 1, 4, 2}

Hence possible value are {4, 6, 12}.

© Copyright : www.madeeasy.in

15• Operating SystemCT-2022 CS

26.26.26.26.26. (d)(d)(d)(d)(d)
Locking of resource can create:
1 .1 .1 .1 .1 . Starvation:Starvation:Starvation:Starvation:Starvation: P1 wants resource R1, which is locked by process P2, when process P2 completes another

process P3 locks resource R1 before process P1, it will happen for indefinite time, so process P1 is in
starvation.

2 .2 .2 .2 .2 . Inconsistent data: Inconsistent data: Inconsistent data: Inconsistent data: Inconsistent data: This problem occur when one process fail in between and another dependent
process read updated value of failed process.

3 .3 .3 .3 .3 . Deadlock: Deadlock: Deadlock: Deadlock: Deadlock: When two process both want two resources to complete but currently lock one-one
resources. This will create deadlock since both are waiting for resource to be free.

27.27.27.27.27. (c)(c)(c)(c)(c)
• Kernal level threads are designed as independent threads, so each thread can be scheduled separately.
• Kernal level threads have more context than user level threads, so switching between Kernal level

threads is slower.
• Kernal level threads are designed as independent, so blocking one threads does not stop entire

process, which is not the case with user level threads.
• Kernal level threads are independent so can be run simultaneously on different processors.

28.28.28.28.28. (b)(b)(b)(b)(b)

• To get the minimum value of count.

Tally1()

Iteration 1. I: count = 0, = 0R1

II: count = 0, = 0R1

Tally2()

Iteration 1. count = 1, = 1R2

2. count = 2, = 2R2

3. count = 3, = 3R2

4. count = 4, = 4R2

5. count = 5, = 5R2

Tally3()

Iteration 1. count = 6, = 6R3

2. count = 7, = 7R3

3. count = 8, = 8R3

4. count = 9, = 9R3
Iteration 1. III: count = 1, = 1R1

Iteration 5. I: count = 1, = 1R3

II. count = 1, = 2R3

Iteration 2. count = 2, = 2R1

3. count = 3, = 3R1

4. count = 4, = 4R1

5. count = 5, = 5R1

Iteration 5. III: count = 2, = 2R3

Time

• To get the maximum value, execute P1, P2 and P3 completely in sequence.
∴ Count = 15.

© Copyright :www.madeeasy.in

16 Computer Science & IT

29.29.29.29.29. (a)(a)(a)(a)(a)
Waiting Time = Turn Around Time – Burst Time

Average Waiting Time =
=
∑

0

Waiting time of
Total number of process

n Pi
i

Waiting Time

0

0

3

0

2

Process
P0

P

P

P

1

2

3

P4

Average Waiting Time =
+ + + + =0 0 3 0 2 1 ms

5

30.30.30.30.30. (d)(d)(d)(d)(d)
• Pages that are shared between two or more processes can be swapped out to disk when demand

paging is applied and we have to swap in new pages and main memory is full.
• The operating system automatically loads pages from disk when necessary when it is needed
• The translation look aside buffer is a hardware data structure.

