- C	CLASS TEST —						SL. 03	_SP_ME_	_ABC_080922
		Inc	dia's Bes	DE at Instit					
	Delhi Bhoj		•	• •		•		war Kolk a	•
	_			M	50	ЭН	ΔΝ	۱C	S
						NGI	VEEF	RING	
						NGI	VEEF		
AN		MEC				NGI	VEEF		
		MEC		NICA e of Te		NGI	NEEF 2022		
	SWER KEY		Date	NICA e of Te	L EI st:08	NGIN 3/09/2	VEEF 2022	RING	(b)
1.	SWER KEY (d)	VEC	CHA Date	NICA e of Te	(c) (c)	NGIN 3/09/2 19.	(a) (b)	RING 25.	(b) (a)
1. 2.	SWER KEY (d) (c)	✓IEC 7. 8. 9.	CHA Date (c) (d)	NICA e of Te 13. 14. 15.	(c) (c)	NGIN 3/09/2 19. 20.	(a) (b) (d)	25. 26.	(b) (a) (c)
1. 2. 3.	SWER KEY (d) (c) (c)	✓IEC 7. 8. 9.	CHA Date (c) (d) (a) (c)	NICA e of Te 13. 14. 15.	(c) (c) (c) (c) (d)	NGIN 3/09/2 19. 20. 21.	(a) (b) (d) (a)	25. 26. 27.	(b) (a) (c) (d)

DETAILED EXPLANATIONS

1. (d)

The acceleration is not being constant since the force is not constant. The impulse force exerted by the water on the plate is $F = \dot{m}V = (\rho AV) \cdot V = \rho AV^2$, where *V* is the relative velocity between the water and the plate, which is moving. The magnitude of the plate acceleration is thus a = F/m. But as the plate begins to move, *V* decreases, so the acceleration must also decrease.

2. (c)

A dimension is a measure of a physical quantity (without numerical values), while a unit is a way to assign a number to that dimension.

3. (c)

$$1 \text{ Poise} = 0.1 \text{ N-s/m}^2$$

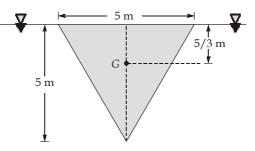
Shear stress,
$$\tau = \mu \frac{dv}{dy}$$

$$\tau = \left(0.1 \times 5 \frac{\text{N-s}}{\text{m}^2}\right) \times \left(\frac{5 \text{ m/s}}{0.015 \text{ m}}\right)$$

$$= 166.67 \text{ N/m}^2$$

 \Rightarrow

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$



Total pressure on the triangle,

$$F = pA = \gamma h_c A$$

= $(1000 \times 0.75 \times 9.81) \times \left(\frac{5}{3}\right) \times \left(\frac{1}{2} \times 5 \times 5\right)$
= $750 \times 9.81 \times \frac{5}{3} \times \frac{25}{2} = 1250 \times \frac{25}{2} \simeq 153.28 \text{ kN}$

India's Beet Institute for IES, GATE & PSUs

9

6. (c)

As per given data,

Gauge pressure = 350 kPa

Barometric reading = 740 mm Hg

$$\rho_{Hg} = 13590 \, \text{kg/m}^3$$

The atmospheric (or barometric) pressure can be expressed,

$$P_{\text{atm}} = \rho g h = 13.590 \times 9.81 \times 740 \times 10^{-3}$$

= 98.655 kPa

Then the absolute pressure in the tank is

$$P_{abs} = P_{gauge} + P_{atm} = 350 \text{ kPa} + 98.655 \text{ kPa}$$

 $P_{abs} = 448.655 \text{ kPa}$

7. (c)

Applying Bernoulli's equation between section 1 and 2,

$$\frac{P_1}{\rho g} + Z_1 + \frac{V_1^2}{2g} = \frac{P_2}{\rho g} + Z_2 + \frac{V_2^2}{2g}$$

 $\operatorname{Re}_m = \operatorname{Re}_p$

$$0 + 0 + \frac{V_1^2}{2g} = 0 + (-2) + \frac{(3V_1)^2}{2g} \qquad (\text{as } A_1 V_1 = A_2 V_2)$$

$$\Rightarrow 2 \times 2 \times 9.81 = 8 V_1^2$$

$$\Rightarrow V_1 = 2.215 \text{ m/s}$$

8. (d)

 \Rightarrow

As, Drag force,
$$F = \rho V^2 L^2$$

$$\frac{F_m}{F_p} = \frac{\rho_m V_m^2 L_m^2}{\rho_p V_p^2 L_p^2} \qquad ... (i)$$

As,

$$\frac{\rho_m V_m L_m}{\mu_m} = \frac{\rho_p V_p L_p}{\mu_p}$$

$$\frac{V_m}{V_p} = \frac{L_p}{L_m} \qquad \dots (ii)$$

Using equation (i) and (ii)

 $\frac{F_m}{F_p} = 1$ $\Rightarrow \qquad F_p = 300 \,\mathrm{N}$

9. (a)

$$\tau = \mu \frac{du}{dx} = \mu (4 - 4x)$$

= 2(4 - 4 × 1) = 0 N/m²

10. (c)

Applying mass conservation.

$$A_1V_1 = A_2V_2 + A_3V_3$$

$$\Rightarrow 450^2 \times 4 = 300^2 \times 3 + 250^2 \times V_3$$

$$V_3 = 8.64 \text{ m/s}$$

11. (a)

Applying Bernoulli's equation between the two reservoirs, we get

$$12.5 = 0.5 \frac{V^2}{2g} + \frac{fLV^2}{2gD} + \frac{V^2}{2g}$$

$$\Rightarrow \qquad 12.5 = \frac{V^2}{2g} \left[1.5 + \frac{fL}{D} \right]$$

$$\Rightarrow \qquad 12.5 = \frac{V^2}{2 \times 10} \left[1.5 + \frac{0.04 \times 1000}{0.5} \right]$$

$$\Rightarrow \qquad 12.5 = \frac{V^2}{20} \times 81.5$$

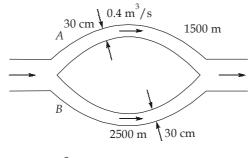
$$\Rightarrow \qquad V = 1.75 \text{ m/s}$$

12. (b)

The average velocity in pipe A,

$$V_A = \frac{\dot{V}}{A_C} = \frac{\dot{V}}{\pi D^2/4} = \frac{0.4 \text{ m}^3/\text{s}}{\pi (0.30 \text{ m})^2/4} = 5.659 \text{ m/s}$$

When two pipes are parallel in a piping system, that head loss for each pipe must be same. When the minor losses are disgarded, the head loss for fully developed flow in a pipe of length *L* and diameter *D* is



$$h_L = f \frac{L}{D} \frac{V^2}{2g}$$

In case of parallel pipe fluid flow problem Head losses are same,

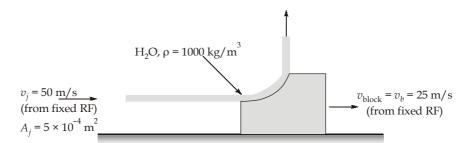
$$(h_L)_A = (h_L)_B$$

 $f_A \frac{L_A}{D_A} \frac{V_A^2}{2g} = f_B \frac{L_B}{D_B} \frac{V_B^2}{2g}$
 $V_B = V_A \sqrt{\frac{L_A}{L_B}} = (5.659 \text{ m/s}) \sqrt{\frac{1500 \text{ m}}{2500 \text{ m}}} = 4.383 \text{ m/s}$

Then the flow rate in pipe *B* becomes

$$\dot{V}_B = A_B V_B = \left[\frac{\pi D^2}{4}\right] V_B = \left[\frac{\pi (0.3 \text{ m})^2}{4}\right] (4.383 \text{ m/s}) = 0.310 \text{ m}^3/\text{s}$$

13. (c)

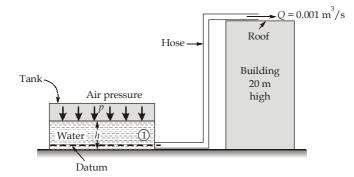


Frictional force on block = Change of momentum of block

$$F_f = \rho A_j (v_j - v_b)^2$$

= (1000)(5 × 10⁻⁴)(50 - 25)²
$$F_f = 312.5 \text{ N}$$

14. (c)



Let 'p' be the air pressure inside the tank.

The velocity of water in the hose,

$$V = \frac{Q}{A} = \frac{0.001}{\frac{\pi}{4} \times (0.05)^2} = 0.509 \text{ m/s}$$

Applying the Bernoulli's equation to the inlet end (1) and the output end of the hose at 20 m height above the bottom level, (Assuming the horizontal line passing through (1) as the datum).

$$\frac{p}{\gamma} + h = 20 + \frac{V^2}{2g} + 0.06$$

where, *p* is the pressure of air in the tank, *h* is the water depth.

 $h < < 20 \,\mathrm{m}$ (given)

Now,

$$\frac{p}{\gamma} = 20 + \frac{(0.509)^2}{2 \times 9.81} + 0.06 = 20.073 \text{ m of water}$$

15. (c)

As per given data: $Q = 2.5 l/s = 2.5 \times 10^{-3} \text{ m}^3/\text{s}$

 $D = 45 \, \text{mm},$ $d = 25 \, \text{mm}$ $\rho = 1000 \, \text{kg/m}^3$ V V

From continuity,

$$V_1 = \frac{Q}{\left(\frac{\pi D^2}{4}\right)} = 1.57 \text{ m/s}$$

$$V_2 = \frac{Q}{\left(\frac{\pi d^2}{4}\right)} = 5.09 \text{ m/s}$$

Hence, applying Bernoulli between (1) and (2)

$$\frac{p_1}{\rho} + \frac{V_1^2}{2} = \frac{p_2}{\rho} + \frac{V_2^2}{2}$$
pressure, $p_{1g} = \frac{\rho}{2} \left(V_2^2 - V_1^2 \right) = \left(\frac{1000}{2} \right) \times (5.09^2 - 1.57^2) = 11.721 \text{ kPa}$

16. (d)

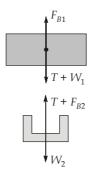
or, in gauge

 $\rho_{water} = 1000 \text{ kg/m}^3.$

Apply the hydrostatic relation from the oil surface to the water surface, skipping the 8 cm part: $p_{\text{atm}} + (898)(9.81)(h + 0.12) - (1000)(9.81)(0.06 + 0.12) = p_{\text{atm}}$ On solving, $h = 0.08 \,\mathrm{m}$

17. (d)

As the given data: Free body diagram



From ΣF_v

$$T = F_{B1} - W_1$$

$$F_{B1} = \rho g(V)_{submerged}$$

= (9.8 × 1000)(50 × 50 × 7.5)(10⁻⁹)

$$\begin{split} F_{B1} &= 0.18375 \, \mathrm{N} \\ W_1 &= \gamma (\mathrm{Specific \ gravity \ of \ block}) \times \mathrm{Volume \ of \ block} \\ &= (9.8 \times 1000) (0.3) (50 \times 50 \times 10) (10^{-9}) = 0.0735 \, \mathrm{N} \\ T &= (0.18375 - 0.0735) = 0.11025 \, \mathrm{N} \\ 3. \, \mathrm{Force \ equilibrium \ (vertical \ direction) \ applied \ to \ metal \ part:} \\ F_{B2} &= \gamma V_2 = (9800) (6600) (10^{-9}) \\ &= 0.06468 \, \mathrm{N} \\ W_2 &= T + F_{B2} = (0.1102 \, \mathrm{N}) + (0.06468 \, \mathrm{N}) \end{split}$$

Mass of metal part,

$$m_2 = \frac{W_2}{g} = 0.01785 \,\mathrm{kg}$$

18. (b)

The frontal area of a sphere is $A = \frac{\pi D^2}{4}$.

The drag force acting on the balloon is

$$F_D = C_D A \frac{\rho V^2}{2} = (0.2) \left[\frac{\pi (7)^2}{4} \right] \frac{(1.20) \left(\frac{40 \times 5}{18} \right)^2}{2} = 570.14 \,\mathrm{N}$$

Acceleration in the direction of the winds

$$a = \frac{F_D}{m} = \frac{570.14}{350} = 1.63 \text{ m/s}^2$$

19. (a)

Pressure gradient $\left(\frac{\partial p}{\partial x}\right)$,

$$\therefore \qquad \qquad U_{\max} = \frac{-1}{8\mu} \left(\frac{\partial \rho}{\partial x}\right) \times t^2$$

 \Rightarrow

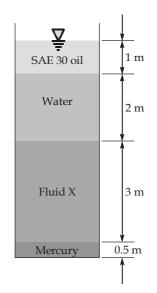
$$3 = \frac{-1}{8 \times 0.02} \left(\frac{\partial p}{\partial x}\right) \times (0.015)^2$$

$$\Rightarrow \qquad \left(\frac{\partial \rho}{\partial x}\right) = \frac{-3 \times 8 \times 0.02}{(0.015)^2} = -2133.33 \text{ N/m}^2/\text{m}$$

14 Mechanical Engineering

20. (b)

Simply apply the hydrostatic formula from top to bottom:



21. (d)

as

$$\omega_{z} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

$$u = (U_{o} + bx)$$

$$v = -by$$

$$\frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} = 0$$

$$\omega_{z} = 0$$

So,

Hence, flow is steady and irrotational.

22. (a)



Apply forced vortex motion equation at points (1) and (2)

$$\frac{P_1}{\rho g} - \frac{(V_1)^2}{2g} + z_1 = \frac{P_2}{\rho g} - \frac{(V_2)^2}{2g} + z_2$$
At point 1,

$$P_1 = P_{atm} \Rightarrow P_{gauge} = 0$$

$$V_1 = \omega R_1 = 0$$

$$Z_1 = 0$$
At point,

$$P_2 = P_{atm} \Rightarrow P_{gauge} = 0$$

$$z_2 = 0.6$$
Therefore,

$$0 - 0 + 0 = 0 - \frac{(\omega R_2)^2}{2g} + 0.6$$

$$\Rightarrow \qquad \frac{\omega^2 (0.45)^2}{2 \times (9.81)} = 0.6$$

$$\Rightarrow \qquad \omega = 7.624 \text{ rad/s}$$

23. (b)

_

$$D_i = 6 \times 10^{-2} \text{ m}$$

 $D_f = 6.9 \times 10^{-2} \text{ m}$

As soap bubble has two surfaces,

Therefore total change in surface area =
$$2\left[4\pi (R_f^2 - R_i^2)\right] = 2\left[\pi (D_f^2 - D_i^2)\right]$$

= 2 (0.003647) = 7.294 × 10⁻³ m²
Work input required, $W = \sigma \times \Delta A = 0.039 \times 7.294 \times 10^{-3}$
= 2.845 × 10⁻⁴ Joule

24. (c)

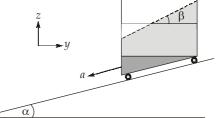
As per given information. It needs to be determined, relation between the slope of the liquid surface and the slope of the inclined surface when the tank is released.

$$\tan \beta = -\frac{a_y}{g + a_z} = \frac{-a \cos \alpha}{g - a \sin \alpha}$$

Since,
$$a = g \sin \alpha,$$

we get,
$$\tan \beta = \frac{g \sin \alpha \cos \alpha}{g - g \sin \alpha \sin \alpha} = \frac{\sin \alpha \cos \alpha}{1 - \sin^2 \alpha}$$
$$= \frac{\sin \alpha \cos \alpha}{\cos^2 \alpha} = \tan \alpha$$

 $\alpha = \beta$



Therefore,

we

25. (b)

Assumption: The buoyancy force in air is negligible,

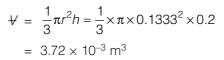
 $\rho_{water} = 1000 \text{ kg/m}^3$,

From geometry

$$\frac{R}{30} = \frac{r}{20}$$

and

The displaced volume of water is



 $r = \frac{2R}{3} = \frac{40}{3} = 13.33 \,\mathrm{cm}$

Therefore, the buoyancy force acting on the cone is

$$F_b = \rho g \Psi = 9810 \times 3.72 \times 10^{-3} = 36.49 \text{ N}$$

h = 0.2 m

For the static equilibrium,

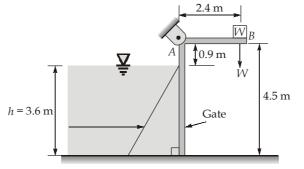
$$F + W_c = F_b$$

 $F + 16.5 = 36.5$
 $F = 20 N$

26. (a)

As per given information,

1.5 m wide, ρ_{water} = 1000 kg/m³



The resultant hydrostatic force acting on the dam becomes,

$$F_R = \rho g \overline{x} A = 1000 \times 9.81 \times \frac{3.6}{2} \times 3.6 \times 1.5 \text{ N} = 95353.2 \text{ N}$$

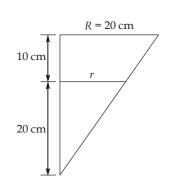
The line of action of the force passes through the pressure centre which is $\frac{2h}{3}$ from the free surface.

$$\overline{h} = \frac{2h}{3} = \frac{2 \times 3.6}{3} = 2.4 \text{ m}$$

Taking the moment about point A and setting it equal to zero gives,

$$\Sigma M_A = 0$$

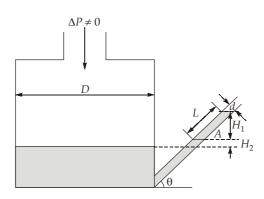
$$F_R \left(0.9 + \overline{h} \right) = W \times 2.4$$



$$W = 131110.65$$

Mass = $\frac{W}{9.81} = \frac{131110.65}{9.81} = 13365 \text{ kg} = 13.36 \times 10^3 \text{ kg}$

27. (c)



Volume rise in tube = Volume fall in reservoir

$$\Rightarrow \qquad \qquad \frac{\pi}{4}d^2 \times L = \frac{\pi}{4}D^2 \times H_2$$

$$\Rightarrow \qquad \qquad H_2 = L \left(\frac{d}{D}\right)^2$$

Also,

 \Rightarrow

$$H_1 = L \sin \theta$$

$$\Delta P = \rho g(H_1 + H_2) = \rho g \left[L \left(\frac{d}{D} \right)^2 + L \sin \theta \right]$$
$$L = \frac{\Delta P}{\rho g \left(\sin \theta + \frac{d^2}{D^2} \right)}$$

 \Rightarrow

28. (d)

Wall shear stress,
$$\tau_o = -\frac{\partial P}{\partial x} \times \frac{R}{2}$$

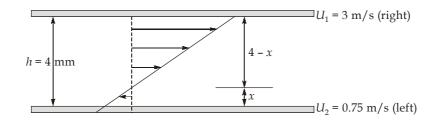
$$-\frac{\partial P}{\partial x} = -\frac{P_2 - P_1}{x_2 - x_1} = \frac{P_1 - P_2}{L} = \frac{\Delta P}{L} = \frac{1800 \times 10^3}{100} = 18000$$
$$\tau_o = -18000 \times \frac{0.06}{4} = 270 \text{ N/m}^2$$

Frictional drag for 100 m length,

$$F_D = \tau_o \times \pi DL = 270 \times \pi \times 0.06 \times 100$$

= 5089 N or 5.089 kN

29. (d)



From similar triangle $\triangle ABC$ and $\triangle CDE$

$$\frac{4-x}{x} = \frac{3}{0.75}$$

$$3x = (4-x)(0.75)$$

$$3x = 3-0.75x$$

$$x = 0.8 \text{ mm}$$

$$y = 4-x = 3.2 \text{ mm}$$

$$\dot{V}_{\text{net}} = (3.2 \times 10^{-3})(5 \times 10^{-2})\frac{3}{2} - (0.8 \times 10^{-3})(5 \times 10^{-2})\frac{0.75}{2}$$

$$\dot{V}_{\text{net}} = 24 \times 10^{-5} - 1.5 \times 10^{-5} = 225 \times 10^{-6} \text{ m}^3/\text{s} = 225 \text{ cm}^3/\text{s}$$

30. (c)

As per given data:

$$u^* = \frac{u}{U}$$
 and $y^* = \frac{y}{\delta}$
 $dy^* = \delta^{-1} dy$

The given parabolic velocity distribution and the expression for the displacement thickness can then be expressed as

$$u^* = 2y^* - y^{*2}$$
, and $\delta^* = \delta \int_0^1 (1 - u^*) dy^*$

Combining these equations gives,

$$\delta^* = \delta \int_0^1 (1 - 2y^* + y^{*2}) dy^*$$
$$\delta^* = \delta \left[y^* - y^{*2} + \frac{1}{3}y^{*3} \right]_0^1$$
$$\delta^* = \frac{1}{3}\delta$$
$$\frac{\delta^*}{\delta} = \frac{1}{3}$$