- C	LASS	TE	ST —			S.N	lo. : ()3_IG_CE_EFJ	J_290822
India's Best Institute for IES, GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in F-mail: info@madeeasy.in Ph: 011-45124612									
DESIGN OF STEEL STRUCTURES									
CIVIL ENGINEERING									
			Date	ofTe	st:2	9/08/20	22		
ANSWER KEY >									
1.	(c)	7.	(c)	13.	(b)	19.	(a)	25.	(c)
2.	(d)	8.	(b)	14.	(b)	20.	(a)	26.	(c)
3.	(c)	9.	(b)	15.	(d)	21.	(b)	27.	(b)
4.	(a)	10.	(d)	16.	(b)	22.	(b)	28.	(c)
5.	(a)	11.	(b)	17.	(b)	23.	(b)	29.	(a)
6.	(d)	12.	(c)	18.	(b)	24.	(a)	30.	(a)

8 Civil Engineering

DETAILED EXPLANATIONS

1. (c)

For maximum shear force in gantry girders, load on wheels should be as close as possible.

where, W_1 and W_2 are wheel loads

2. (d)

Radiography is used to find defects in butt weld and ultrasonic method is used to find defect in fillet welds.

4. (a)

Maximum size of fillet weld depends on size of thinner plate to be connected. It is 1.5 mm less than the thickness of thinner plate.

6. (d)

Fire resistance of a steel member depends upon all these four factors.

8. (b)

9. (b)

Plastic section can develop plastic moment resistance and plastic hinge, but compact section can reach upto plastic moment of resistance and cannot make plastic hinge.

10. (d)

Wind-induced oscillations come under limit state of serviceability.

11. (b)

Depth of web plate, d = 2000 mmSpacing of transverse stiffeners,

$$c = 1000 \,\mathrm{mm}$$

$$c/d = \frac{1000}{2000} < \sqrt{2}$$

: Minimum moment of inertia of transverse stiffener

$$I_{s} = \frac{1.5d^{3}t_{w}^{3}}{c^{2}}$$

= $\frac{1.5 \times (2000)^{3} \times \left(\frac{2000}{67}\right)^{3}}{(1000)^{2}}$ (Since $t_{w} = \frac{d}{67}$)
= $31918.82 \times 10^{4} \text{ mm}^{4}$

12. (c)

For Fe410 grade steel, $f_y = 250 \text{ MPa}$

:. Shear area $(A_v) = ht_w = 300 \times 7.5 = 2250 \text{ mm}^2$

$$\therefore \text{ Design shear strength of the beam section} = \frac{f_{yw}A_v}{\gamma_{m0}\sqrt{3}}$$

MADE ER

$$= \frac{250 \times (300 \times 7.5)}{1.1 \times \sqrt{3}} = 295235.93 \text{ N} = 295.236 \text{ kN}$$

13. (b)

·: Section is plastic (given) $V < 0.6 V_{d}$ And So, it is a case of low shear and thus design bending

$$M_{d} = \frac{\beta_b Z_p f_y}{\gamma_{m0}} \le \frac{1.2 Z_e f_y}{\gamma_{m0}}$$

 $\beta_{\rm b}$ = 1 for plastic section

$$M_d = \frac{1 \times 651.74 \times 10^3 \times 250}{1.1 \times 10^6} \le \frac{1.2 \times 573.6 \times 10^3 \times 250}{1.1 \times 10^6}$$
$$= 148.12 \text{ kNm} \le 156.44 \text{ kNm}$$
(OK)

 $\sqrt{\frac{2.5 \times 8.33 \times \left\{50^2 - 0.3(25)^2\right\} \times 1.1}{250}}$

So design bending strength = 148.12 kNm.

14. (b)

Bearing strength of concrete

$$= 0.60 f_{ck} = 0.60 \times 20 = 12 \text{ N/mm}^2$$

For factored load, $P_u = 1000 \text{ kN}$
Bearing pressure, $w = \frac{1000 \times 10^3}{400 \times 300} = 8.33 \text{ N/mm}^2 < 12 \text{ N/mm}^2$
Now, longer projection, $a = \frac{400 - 300}{2} = 50 \text{ mm}$
Smaller projection, $b = \frac{300 - 250}{2} = 25 \text{ mm}$
So, minimum thickness of base plate required is
 $t = \sqrt{\frac{2.5w(a^2 - 0.3b^2)\gamma_{mo}}{f_y}}$

= 14.56 mm

15. (d)

Resultant force =
$$\sqrt{3^2 + 4^2} = 5$$
kN
Stress in rivet = $\frac{5000}{500} = 10$ N/mm²
,
 $F_2 = \frac{P}{2}$

=

But,

:.

 $P = 3 \times 2 = 6 \text{ kN}$

© Copyright: MADE EASY

16. (b)

Since load is applied out of the plane of bolts. So, all four four bolts will experience equal amount of shear force.

Shear force =
$$\frac{1000}{4}$$
 = 250 N
Shear stress = $\frac{250 \times 4}{\pi \times 36}$ = 8.84 N/mm²

19. (a)

Degree of static indeterminacy = 1

:. Number of plastic hinges required for collapse = 1 + 1 = 2At failure,

Plastic hinges form at A and B

External work	=	$P_{u} \times 2\theta = 2P_{u}\theta$
Internal work	=	$M_P \theta + M_P \times 2\theta = 3M_P$
External work	=	Internal work
$2P_{u}\theta$	=	$3M_{P}\theta$
P _u	=	$\frac{3}{2} \times 100 = 150 \text{ kN}$

21. (b)

 \Rightarrow

 \Rightarrow

.•.

Size of the weld = 8 mmThroat thickness = $0.7 \times 8 = 5.6 \text{ mm}$

Vertical shear stress in weld
$$(f_s) = \frac{W}{2 \times d \times t} = \frac{100 \times 10^3}{2 \times 300 \times 5.6} = 29.76 \text{ MPa}$$

Maximum bending stress will be at the extreme points,

$$f_b = \frac{6We}{2td^2} = \frac{6 \times 100 \times 10^3 \times 50}{2 \times 5.6 \times 300^2} = 29.76 \text{ MPa}$$

:.

Maximum resultant stress =
$$\sqrt{f_s^2 + f_b^2} = \sqrt{29.76^2 + 29.76^2} = \sqrt{2} \times 29.76 = 42.09 \text{ MPa}$$

22. (b)

Number of plastic hinge location, N = 6Number of redundancy, r = 3Number of independent mechanisms = 6 - 3 = 3

23. (b)

Total weld length =	250 × 2 + 80 = 580 mm
Strength of weld =	0.7 × 8 × 108 = 604.8 N/mm
Maximum load =	$604.8 \times 580 \simeq 350.78 \text{ kN}$

24. (a)

Maximum allowable slenderness ratio = 350

$$\Rightarrow \qquad \frac{l}{r_{\min}} = 350$$
For
$$l = 6000 \text{ mm}$$

$$r_{\min} = \frac{6000}{350} = 17.14 \text{ mm}$$

India's Best Institute for IES, GATE & PSUe

25. (c)

Strength of weld,
$$f_s = \frac{f_u}{\sqrt{3} \times \gamma_{mw}} \times t_t = \frac{410}{\sqrt{3} \times 1.25} \times 0.7 \times 6 \times 1 = 795.36 \text{ N/mm}$$

Torque resisted $= f_s \times \pi d \times \frac{d}{2}$
 $= 795.36 \times \pi \times 200 \times \frac{200}{2} = 49.97 \text{ kNm}$

26. (c)

For 20 mm diameter bolt, diameter of bolt hole = 22 mm Calculation of net area,

 $A_{n} (\text{path 111}) = (B - nd) \times t$ where, B = 190 mm, t = 6 mm $(190 - 3 \times 22) \times 6 = 744 \text{ mm}^{2}$ $A_{n} (\text{path 1221}) = \left(190 - 4 \times 22 + \frac{(40)^{2} \times 2}{4 \times 30}\right) \times 6 = 772 \text{ mm}^{2}$ $A_{n} (\text{path 12321}) \text{ and path } (12121) = \left(190 - 5 \times 22 + \frac{4 \times (40)^{2}}{4 \times 30}\right) \times 6 = 800 \text{ mm}^{2}$ $\therefore \qquad A_{\text{min}} = 744 \text{ mm}^{2}$ $\therefore \qquad A_{\text{min}} = 744 \text{ mm}^{2}$ $\therefore \qquad \text{Net rupture strength} = \frac{0.9A_{n}f_{u}}{\gamma_{m1}} = \frac{0.9 \times 410 \times 744}{1.25}$ = 219628.8 N $\approx 219 \text{ kN}$

© Copyright: MADE EASY

28. (c)

For optimum strength,

$$I_{xx} = I_{yy} \text{ (of section)}$$

$$\Rightarrow \qquad 3816.8 \times 2 = \left[219.1 + 38.67 \left(2.30 + \frac{s}{2}\right)^2\right] \times 2$$

$$\Rightarrow \qquad s \simeq 14.7 \text{ cm}$$

c

29. (a)

We know that in plastic condition neutral axis will be equal area axis So,

Calculation of location of equal area axis

Total area of section,
$$A = 40 \times 100 + 80 \times 30$$

= 6400 mm^2
 $\therefore \qquad \frac{A}{2} = 3200 \text{ mm}^2$
 $\therefore \qquad \text{Compressive force} = \text{Area} \times \text{Stress}$
= $(32 \times 100) \times 250$
= 800 kN