| CLASS TEST S.No. : 01 JF                                                                                                                                          |                           |     |     |     |     |     |     | S_080 | 82022 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----|-----|-----|-----|-----|-------|-------|
| India's Best Institute for IES, GATE & PSUs                                                                                                                       |                           |     |     |     |     |     |     |       |       |
| Delhi   Bhopal   Hyderabad   Jaipur   Lucknow   Pune   Bhubaneswar   Kolkata   Patna           Web: www.madeeasy.in   E-mail: info@madeeasy.in   Ph: 011-45124612 |                           |     |     |     |     |     |     |       |       |
|                                                                                                                                                                   |                           |     |     |     |     |     |     |       |       |
|                                                                                                                                                                   |                           |     |     |     |     |     |     |       |       |
| THEODY OF COMPLITATION                                                                                                                                            |                           |     |     |     |     |     |     |       |       |
| THEORY OF COMPUTATION                                                                                                                                             |                           |     |     |     |     |     |     |       |       |
| COMPUTER SCIENCE & IT                                                                                                                                             |                           |     |     |     |     |     |     |       |       |
|                                                                                                                                                                   | Date of Test : 08/08/2022 |     |     |     |     |     |     |       |       |
|                                                                                                                                                                   |                           |     |     |     |     |     |     |       |       |
|                                                                                                                                                                   |                           |     |     |     |     |     |     |       |       |
| AN                                                                                                                                                                | SWER KEY                  | >   |     |     |     |     |     |       |       |
| 1.                                                                                                                                                                | (d)                       | 7.  | (a) | 13. | (c) | 19. | (c) | 25.   | (c)   |
| 2.                                                                                                                                                                | (d)                       | 8.  | (a) | 14. | (b) | 20. | (b) | 26.   | (c)   |
| 3.                                                                                                                                                                | (a)                       | 9.  | (c) | 15. | (d) | 21. | (c) | 27.   | (b)   |
| 4.                                                                                                                                                                | (a)                       | 10. | (b) | 16. | (c) | 22. | (b) | 28.   | (b)   |
| 5.                                                                                                                                                                | (c)                       | 11. | (c) | 17. | (c) | 23. | (c) | 29.   | (d)   |
| 6.                                                                                                                                                                | (b)                       | 12. | (b) | 18. | (d) | 24. | (d) | 30.   | (c)   |
|                                                                                                                                                                   |                           |     |     |     |     |     |     |       |       |

#### 1. (d)

## 2. (d)

You can get only 'b' from both.

## 3. (a)

Complement in CFL not closed but in DCFL it is closed.  $L_1$  is DCFL  $L_2$  is also DCFL.

- 4. (a)
- 5. (c)

$$((11))^* (11111)^*)^* = (11 + 11111)^*$$

Which is the language corresponding to given grammar.

#### 6. (b)

The given NFA accepts a language where each string starts with 'gat' [including Null string]  $\therefore$  Number of states required in DFA = 4 + 1 = 5 states



### 7. (a)

Simulate M on all strings of length atmost n for n steps and keep increasing n. We accept if the computation of M accepts some string.

#### 8. (a)

Each rule A  $\rightarrow$  BC increases the length of the string by 1, which gives (*n* – 1) steps and exactly *n* rules A  $\rightarrow$  a to convert variables into terminals.

Therefore exactly 2n - 1 steps are required for CNF CFG. So option (a) is correct.

9. (c)

$$\begin{array}{ll} L_1 \ = \ \varphi \rightarrow \ L_1^{\ *} = \{\epsilon\} \text{ is finite} \\ L_1 \ = \ \{a\} \rightarrow \ L_1^{\ *} = \{a^*\} \text{ is infinite} \end{array}$$

 $\therefore$   $L_2$  need not be infinite



# India's Beet Institute for IES, GATE & PSUs

## 11. (c)



## 12. (b)

#### 13. (c)

Clearly  $L_1$ ,  $L_2$  are DCFL's and hence CFL's.

$$L_1 \cap L_2 = \{a^i \ b^j \ c^k \mid i < j \text{ and } i < k\}$$

is not a CFL, since 2 comparisons must be made before acceptance and this is not possible using a single stack.

So, choice (c) is correct.

#### 14. (b)

B1000B
1R000B
10R00B
1000RB
1000LB
100L0B
10L00B
1L000B
L1000B

## 15. (d)

 $S \rightarrow aSa \mid aAa \\ A \rightarrow bA \mid b$ 

$$L(A) = b^{+}$$
  

$$L(S) = a^{n}(ab^{+}a)a^{n}, n \ge 0$$
  

$$= a^{n+1}b^{+}a^{n+1}$$
  

$$= a^{m}b^{+}a^{m} | m > 0$$
  

$$= \{a^{m}b^{n}a^{k} | m = k, m, n, k > 0\}$$

#### 16. (c)

- $L = \{a^{m}b^{n}b^{k}d^{l} | \text{ if } (n = k \text{ then } m = l\} \\ = \{a^{m}b^{2n}b^{m}\} \cup \{a^{m}b^{2n + 1}b^{k}\}$ 
  - = DCFL  $\cup$  regular = DCFL



17. (c)



 $G \to A$  : Pushes "\$" onto stack initially.

 $A \rightarrow A$ : Pushes 0 for input 0 and Pushes 1 for input 1.

 $A \rightarrow T$ : Moves A to T without reading an input (or)

R read 0 or 1 from input tape and does no operation on the stack.

 $T \rightarrow T$ : Pop 0 for input 0 and Pop 1 for input 1.

 $T \rightarrow E$ : Pop "\$" from stack and reaches to final state [input string has completed reading]  $\therefore \qquad L = \{ \epsilon, 0, 1, 00, 11, 000, 010, 101, 111, .... \}$ G is : S  $\rightarrow$  0S0 | 1S1 | 0 | 1 |  $\epsilon$ 

So option (c) is correct.

#### 18. (d)

(a) *L* is not recursive [and not REL], TM accepts a regular language is undecidable.

(b) *L* is not recursive [and not REL], TM accepts a regular language is undecidable.

- (c) *L* is not recursive language [But REL], State entry problem is undecidable.
- (d) *L* is recursive language

So option (d) is correct.

#### India's Beet Institute for IES, GATE & PSUs

#### 19. (c)

$$R = (a + \varepsilon) (bb^*a)^*$$

R generates the language that do not contain two or more consecutive a's and do not end with b.

## 20. (b)

B is Turing recognizable: Guess the 3 distinct inputs by non-deterministically for each TM and collect those TM's. A is complement of B, so A is not Turing recognizable.

Both A and B are undecidable languages, where A is non-REL and B is REL but not recursive.

## 21. (c)

$$S \rightarrow AAaSb | \varepsilon$$

$$A \rightarrow a | \varepsilon$$

$$L(G) = \{a^{m}b^{n} | n \le m \le 3n\}$$

 $L_2$ 

22. (b)

$$-L_1 = L_2 \cap \overline{L_1}$$
  
= REL \cap RECURSIVE  
= REL \cap RECURSIVE  
= REL

 $\therefore$   $L_2 - L_1$  is Recursive Enumerable Language (REL).

## 23. (c)

 $\overline{L}$  has every even length string and it contain all odd length strings which are not in the form of  $w \times w^{R}$ . [It can be implemented by selecting non-deterministic mismatch symbols of w and  $w^{R}$ ]

 $\overline{L}$  is CFL but not DCFL.

#### 24. (d)

The language accepted by the PDA with finite stack is always regular language. Regular language may be finite or infinite.

 $\therefore$  Option (d) is correct.

## 25. (c)

 $\begin{array}{l} L_1.L_2 \ = \ (\mathrm{Regular}) \ . \ (\mathrm{CSL}) \\ L_2 \ \mathrm{is} \ a^n \ b^n \ c^n, \ \mathrm{but} \ L_1 \ \mathrm{can} \ \mathrm{be} \ \mathrm{any} \ \mathrm{regular} \ \mathrm{language} \\ \mathbf{Case 1:} \ \mathrm{If} \ L_1 = \phi, \\ \Rightarrow \qquad \qquad L_1.L_2 \ = \ \phi. \ \{a^n \ b^n \ c^n\} = \phi \ \mathrm{is} \ \mathrm{regular} \\ \mathbf{Case 2:} \ \mathrm{If} \ L_1 = \{\epsilon\} \\ \Rightarrow \qquad \qquad L_1.L_2 \ = \ \{\epsilon\}. \ \{a^n \ b^n \ c^n\} = \{a^n \ b^n \ c^n\} \ \mathrm{is} \ \mathrm{CSL} \\ L_1.L_2 \ \mathrm{is} \ \mathrm{always} \ \mathrm{CSL} \ \mathrm{but} \ \mathrm{it} \ \mathrm{may} \ \mathrm{or} \ \mathrm{may} \ \mathrm{not} \ \mathrm{be} \ \mathrm{regular}. \end{array}$ 

26. (c)



So, option (c) is correct.

27. (b)



Number of states = 13 states

#### 28. (b)

- (a) Regular language:  $1 [(0 + 1) (0 + 1)]^*$
- (b) Non regular language (finding middle symbol is not possible)
- (c) Regular language: [(0 + 1) (0 + 1)]\* 1

#### 29. (d)

- All given languages are DCFL.
- (a)  $\{w \mid \#_0(w)! = \#_1(w), w \in (0+1)^*\}$  is DCFL.
- (b)  $\{xwx \mid x \in (0 + 1), w \in (0 + 1)^*, \#_0(w) = \#_1(w)\}$  is DCFL.
- (c) If string starts with 1 then it accepts  $0^{n}1^{n}$  as next symbols of the string. If string starts with 11 then it accepts  $0^{K}1^{2K}$  as next symbols of the string, which is also DCFL.

30. (c)



 $\therefore$  Option (c) is correct.

####