CLA	SS T	EST							
						S.No.	:02	CH1_EE_C·	+D_010719
							Μ	easureme	nt
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
ELECTRICAL ENGINEERING									
Date of Test : 01/07/2019									
ANSWER KEY > Measurements									
1.	(d)	7.	(a)	13.	(a)	19.	(b)	25.	(a)
2.	(b)	8.	(c)	14.	(c)	20.	(d)	26.	(d)
3.	(a)	9.	(a)	15.	(d)	21.	(b)	27.	(b)
4.	(d)	10.	(c)	16.	(c)	22.	(c)	28.	(b)
5.	(b)	11.	(b)	17.	(d)	23.	(d)	29.	(c)
6.	(a)	12.	(a)	18.	(b)	24.	(b)	30.	(b)

Detailed Explanations

1. (d)

: Power dissipation across the resistor

$$P = VI$$

relative limiting error in measurement of power across the resistor is

$$\frac{\delta P}{P} = \pm \left[\frac{\delta V}{V} + \frac{\delta I}{I}\right]$$
$$\delta V = \pm \frac{2}{100} \times 100 = \pm 2V$$
$$\frac{\delta V}{V} \% = \pm \frac{2}{80} \times 100 = \pm 2.5\%$$
$$\delta I = \pm \frac{2}{100} \times 150 = \pm 3 \text{ mA}$$
$$\frac{\delta I}{I} \% = \pm \frac{3}{80} \times 100 = \pm 3.75\%$$
$$\frac{\delta P}{P} \% = \pm [2.5 + 3.75] = 6.25\%$$

2. (b)

In order to achieve converging balance, the elements which are not common in the equation of R_1 and L_1 are chosen as variables.

So, R_4 and C_4 should be chosen for achieving converging balance.

3. (a)

The frequency ratio of two signals is given by

$$\frac{f_y}{f_x} = \frac{\text{number of intersections of the horizontal}}{\text{number of intersections of the vertical}}$$
$$\frac{f_y}{f_x} = \frac{9}{7}$$
$$\frac{f_x}{f_y} = \frac{7}{9}$$
$$\frac{f_x}{f_y} = 0.77 \text{ A}$$

5. (b)

 \Rightarrow

 \Rightarrow

As PMMC reads only DC value or average value and average value is equal to

$$V_{\text{avg}} = \frac{\text{Area under the curve}}{\text{Total time}}$$
$$V_{\text{avg}} = \frac{A_1 + A_2 - A_3}{10}$$
$$= \frac{[10 \times 1] + [5 \times 3] - [4 \times 10]}{10} = -1.5 \text{ V}$$

6. (a)

For the instrument to have uniform scale, the deflection (θ) should vary linearly with the quantity to be measured.

In Electrodynamo Wattmeter the deflection, $\theta \propto P_{T}$

and in permanent magnet moving $coil, \theta \propto I$

: Both of these instruments have uniform scale.

7. (a)

Torque produced

where

$$I = 5 \text{ A}$$

$$T = 180 \,\mu\text{N-m}$$

$$= 180 \times 10^{-6} \,\text{N-m}$$

$$T = \frac{1}{2} \times 5^2 \times \frac{dL}{d\theta}$$

$$180 \times 10^{-6} = \frac{1}{2} \times 5^2 \times \frac{dL}{d\theta}$$

 $T = \frac{1}{2}I^2 \frac{dL}{d\theta}$

Date of change of self inductance

$$\frac{dL}{d\theta} = 14.4 \times 10^{-6} \text{ H/radian}$$
$$\frac{dL}{d\theta} = 14.4 \,\mu\text{H/radian}$$

8. (c)

- In self-generating (or active) transducers, the energy requirement of the transducer are met entirely from the input signal.
- In a photovoltaic cell, the incident light energy whose intensity being measured, supplies the entire energy for generating the proportional amount of output voltage, so it is self generating transducer.
- In Bourdon tube of a pressure gauge input pressure which is to be measured cause the deflection of pointer no other external energy is required for deflection.
- In thermocouple the heat energy whose temperature is to be measured generate emf.
- In LVDT some excitation energy is required for generating emf in secondary winding. So these are power operated or passive transducers.
- 9. (a)

÷

$$\phi = \tan^{-1} \left[\sqrt{3} \left(\frac{W_1 - W_2}{W_1 + W_2} \right) \right] = \tan^{-1} \left[\sqrt{3} \left(\frac{4 - 2}{4 + 2} \right) \right] = 30^{\circ}$$

Power factor = $\cos \phi = \cos 30^{\circ} = 0.866$

10. (c)

men

India's Best Institute for IES, GATE & PSUs

: The function of controlling mechanism are

- To produce a force equal and opposite to the deflecting force at the final steady position of pointer in ٠ order to make the deflection of the pointer definite for a particular magnitude of current.
- In the absence of a controlling mechanism, the pointer will shoot (swing) beyond the final steady ٠ position for any magnitude of current and thus the deflection will be indefinite and the pointer will continuously rotate.

11. (b)

D.C sensitivity is

 $S_{\rm dc} = \frac{1}{I_{FSD}} = \frac{1}{100\,\mu\rm{A}} = 10\,\rm{k}\Omega\rm{/V}$

For a full wave rectifier circuit AC sensitivity

	$S_{\rm ac}$	=	$0.9 S_{dc} = 9 \text{ k}\Omega/\text{V}$
Resistance of multiplier	R_s	=	$S_{\rm ac} V_{\rm rms} - R_m - 2R_d$
Since diodes are ideal,	R_d	=	0
Then,	R_s	=	9000 × 10 - 1000
		=	89000 Ω
		=	89 kΩ

12. (a)

	Energy =	=	$VI\cos\phi \times t$
	=	=	$200 \times 50 \times 0.5 \times 1 h = 5 kWh$
Meter makes 200	revolution fo	or	1 unit of energy i.e. 1 kWh
So,	for $5 \text{ kWh} =$	=	$200 \times 5 = 1000$ revolution
	% error =	=	$\frac{1200 - 1000}{1000} \times 100 = 20\%$ fast

13. (a)

Deflection sensitivity,
$$S = \frac{Ll_d}{2dV_a}$$

Given,
 $L = 60 \text{ cm},$
 $l_d = 30 \text{ mm},$
 $d = 5 \text{ mm}.$
 $V_a = 3000 \text{ V}$
 $= \frac{(0.60)(0.03)}{2 \times 0.005 \times 3000} \text{ m/V}$
 $= \frac{(0.60)(0.03)}{2 \times 0.005 \times 3} \text{ mm/V}$
 $= 0.6 \text{ mm/V}$

14. (c)

$$V_0/V_1 = \frac{\frac{R_2}{1+j\omega C_2 R_2}}{\frac{R_2}{1+j\omega C_2 R_2} + \frac{R_1}{1+j\omega C_1 R_1}}$$

$$= \frac{R_2(1+j\omega C_1R_1)}{R_2(1+j\omega C_1R_1)+R_1(1+j\omega C_2R_2)}$$
$$V_0/V_1 = \frac{(R_2+j\omega C_1R_1R_2)}{(R_1+R_2)+j\omega R_1R_2(C_1+C_2)}$$

For V_0/V_1 to be independent of frequency, the imaginary part should be 0. Which gives us,

$$\begin{array}{rcl} & & & R_1C_1 &= R_2C_2 \\ \Rightarrow & & 2000 \times 10 &= 500 \times C_2 \\ \Rightarrow & & & C_2 &= 40\,\mu\mathrm{F} \end{array}$$

(d) 15.

Reading of PMMC voltmeter (V_{y}) is given by

 $V_{v} = \frac{R_{v}}{R_{s} + R_{v}} \times V_{s}$ $\begin{array}{ll} R_{_V} &=& S_{_V}V \\ R_{_V} &=& 10 \times 10 = 100 \ \mathrm{k}\Omega \end{array}$ For 10 V scale, $4 = V_s \times \frac{100}{R_s + 100}$ Using above formula, $R_v = 10 \times 20 = 200 \text{ k}\Omega$ For 20 V scale, $6 = \frac{V_s \times 200}{R_s + 200}$ Using same formula, On solving equation (i) and (ii) $\begin{array}{rcl} R_{s} &=& 200 \; \mathrm{k}\Omega \\ V_{s} &=& 12 \; \mathrm{V} \end{array}$ We get,

... (ii)

16. (c)

Error = \pm (0.5% of reading + 5 counts) Number of counts form 0 to 19999 are 20000

$$\therefore \qquad \text{Error} = \pm \left[\left(25 \times \frac{0.5}{100} \right) + 5 \times \frac{100}{20000} \right] \Omega$$
$$= \pm 0.15 \Omega$$

17. (d)

The equivalent resistance of the voltmeter on its 50 V scale is

$$R_V = 100 \ \Omega/V \times 50 \ V = 5 \ k\Omega$$

et *B*, be the equivalent resistance of *B*, and *B*.

Let $R_{\rm p}$ be the equivalent resistance of $R_{\rm x}$ and $R_{\rm v}$

$$R_{p} = \frac{R_{x} \times R_{v}}{R_{x} + R_{v}} = \frac{5R_{x}}{5 + R_{x}}$$

The equivalent circuit is

$$V_x = \frac{100 \times R_p}{R_p + R_s} = 4.65 \text{ V}$$
$$= \frac{100 \times R_p}{R_p + 100} = 4.65 \text{ V}$$

 \Rightarrow

www.madeeasy.in

$$R_p = \frac{4.65}{95.35} \times 100 = 4.878 \,\mathrm{k}\Omega$$

 $R_x = \frac{R_p \times 5}{5 - R_p} = \frac{4.878 \times 5}{5 - 4.878} \approx 200 \text{ k}\Omega$

Then

18. (b)

To make a voltmeter of range (0-60 V) with maximum current limited to 50 μ A, the value of multiplier resistor, R_{se} , will be given by,

$$I_{\text{max}} = \frac{V}{R_m + R_{se}}$$

$$50 \times 10^{-6} = \frac{60}{1000 + R_{se}}$$

$$R_{se} = \frac{60}{50 \times 10^{-6}} - 1000 = \frac{60 \times 10^6}{50} - 1000 = \left(\frac{60 \times 1000}{50} - 1\right) k\Omega = 1199 \, k\Omega$$

19. (b)

Under balanced condition,

$$Z_{1}Z_{4} = Z_{2}Z_{3}$$

$$\left(r_{1} + \frac{1}{j\omega C_{1}}\right)\left(\frac{R_{4}}{1 + j\omega C_{4}R_{4}}\right) = \frac{R_{3}}{j\omega C_{2}}$$

$$\left(r_{1} + \frac{1}{j\omega C_{1}}\right)R_{4} = \frac{R_{3}}{j\omega C_{2}}\left(1 + j\omega C_{4}R_{4}\right)$$

$$r_{1}R_{4} + \frac{R_{4}}{j\omega C_{1}} = \frac{R_{3}}{j\omega C_{2}} + \frac{R_{3}C_{4}R_{4}}{C_{2}}$$

Separating real and imaginary parts we have

$$r_{1} = \frac{R_{3}C_{4}}{C_{2}} = \frac{1000 \times 0.5}{1} = 500 \text{ ohm}$$

$$C_{1} = \frac{C_{2}R_{4}}{R_{3}} = \frac{1 \times 500}{1000} = 0.5 \,\mu\text{F}$$
Dissipation factor,
$$D_{1} = \tan \delta = \omega C_{1}r_{1}$$

$$= 2 \times \pi \times 100 \times 0.5 \times 10^{-6} \times 500 \qquad (\text{as frequency} = 100 \text{ Hz})$$

$$= 0.157$$
(d)
$$FOM \text{ of } M_{1}(S_{10}) = 5 \,\mathrm{k}\Omega/\mathrm{V}$$

FOM of $M_1(S_{V1}) = 5 \text{ k}\Omega/\text{V}$ FOM of $M_2(S_{V2}) = 10 \text{ k}\Omega/\text{V}$ Full scale current through the meters are

$$I_{f1} = \frac{1}{S_{V1}} = \frac{1}{5} = 0.2 \text{ mA}$$

 $I_{f2} = \frac{1}{S_{V2}} = \frac{1}{10} = 0.1 \text{ mA}$

www.madeeasy.in

In series combination, maximum current that can pass through when both the meters are connected in series will be 0.1 mA.

Resistance of $M_1 = 5 \text{ k}\Omega/\text{V} \times 200 = 1 \text{ M}\Omega$ Resistance of $M_2 = 10 \text{ k}\Omega/\text{V} \times 200 = 2 \text{ M}\Omega$ Hence, maximum voltage rating

$$= 0.1 \text{ mA} (1 \text{ M}\Omega + 2 \text{ M}\Omega) = 300 \text{ V}$$

21. (b)

$$\begin{array}{rcl} V_1 &=& 100 \pm 1.5 \ V \\ V_2 &=& 150 \pm 2 \ V \\ V_3 &=& V_1 + \ V_2 \end{array}$$

Standard deviation in V_3 will be

$$\sigma_{V_3} = \sqrt{\left(\frac{\partial V_3}{\partial V_1}\right)^2} \sigma_{V_1}^2 + \left(\frac{\partial V_3}{\partial V_2}\right)^2 \sigma_{V_2}^2$$

$$\frac{\partial V_3}{\partial V_1} = \frac{\partial}{\partial V_1} (V_1 + V_2) = 1$$

$$\frac{\partial V_3}{\partial V_2} = \frac{\partial}{\partial V_2} (V_1 + V_2) = 1$$

$$\sigma_{V_3} = \sqrt{1^2 \times (1.5)^2 + 1^2 \times (2)^2} = \sqrt{6.25} = 2.5 \text{ V}$$

...

$$V_3 = \sqrt{1^2 \times (1.5)^2 + 1^2 \times (2)^2} = \sqrt{6.25} = 2.5 \text{ V}$$

22. (c)

$$I = -5 + 8\sqrt{2} \sin(\omega t + 60^{\circ}) + 6\sqrt{2} \sin(\omega t + 30^{\circ})$$

$$I_{1} = -5 A$$

$$I_{2} = 8\sqrt{2} \sin(\omega t + 60^{\circ})$$

$$I_{3} = 6\sqrt{2} \sin(\omega t + 30^{\circ})$$
Averave value of $I_{1} = -5 A$
Averave value of $I_{2} = 0 A$
Averave value of $I_{3} = 0 A$
average value of $I = -5 A$

PMMC reads only average value of current, therefore PMMC reads = -5 A (since it is centre zero) RMS meter and moving iron instrument both measures rms value

RMS value of
$$I = \sqrt{(-5)^2 + \left(\frac{8\sqrt{2}}{\sqrt{2}}\right)^2 + \left(\frac{6\sqrt{2}}{\sqrt{2}}\right)^2} = 11.18 \text{ A}$$

So,

23. (d)

The wattmeter measures the load power plus the loss in current coil as current coil is connected to load side.

So, Loss in current coil =
$$I^2r = 10 \times 10 \times 0.02 = 2$$
 watt
Load power = $VI\cos\phi = 200 \times 10 \times 1 = 2000$ watt

So,

Error =
$$\frac{2}{2000} \times 100 = 0.1\%$$

i.e. wattmeter reads 0.1% more than load power

24. (b)

 $C_1 = 110 \text{ pF}, C_2 = 20 \text{ pF}$

$$n = \frac{f_2}{f_1} = \frac{2f}{f} = 2$$

$$C_d = \frac{C_1 - n^2 C_2}{n^2 - 1} = \frac{110 - 4 \times 20}{3} = 10 \text{ pF}$$

25. (a)

Number of pulses per second = $\frac{\text{Reading of digital meter}}{\text{Gating period}} = \frac{0048}{10^4 \times 10^{-6}} = 4800$

Speed =
$$\frac{\text{No. of pulses per second}}{\text{No. of teeth}} = \frac{4800}{120} = 40 \text{ r.p.s.}$$

27. (b)

...

For the d.c. potentiometer, we have:

$$\frac{E_1}{E_2} = \frac{l_1}{l_2}$$

or, emf of the test cell, $E_2 = E_1 \cdot \frac{l_2}{l_1} = (1.18) \times \frac{680}{600} \approx 1.34 \text{ V}$

28. (b)

Sensitivity of LVDT =
$$\frac{\text{Output Voltage}}{\text{Displacement}} = \frac{5 \times 10^{-3}}{2} = 2.5 \text{ mV/mm}$$

Sensitivity of instrument = Amplification factor × Sensitivity of LVDT
= 200 × 2.5 mV/mm = 500 mV/mm
Minimum voltage that can be read on the voltmeter = $\left(\frac{10}{100}\right) \times \frac{1}{5} = 0.02 \text{ V} = 20 \text{ mV}$

Resolution: Minimum cange in input displacement that can read by instrument.

$$\therefore$$
 Sensitivity, $S = \frac{\Delta \text{ o/p}}{\Delta \text{ i/p}}$

$$\Delta(i/p)_{min} = \frac{\Delta (o/p)_{min}}{S} = \frac{20 \text{ mV}}{500 \text{ mV/mm}} = 40 \text{ }\mu\text{m}$$

...

29. (c)

...

To by pass the additional current we have to connect a shunt resistance across the DC ammeter.

$$I_{fsd} = 1 \text{ mA}$$
$$R_m = 100 \Omega$$
$$R_{sh} = \frac{R_m}{m-1}$$

т

Where, multiplying factor,

$$= \frac{I}{I_{fsd}} = \frac{1}{1 \times 10^{-3}} = 1000$$

$$R_{sh} = \frac{100}{1000 - 1} = 0.1001 \ \Omega$$

30. (b)

$$V_0 = \left[g \times t \times \frac{F}{A}\right] \times \text{Gain}$$
$$F = \frac{V_0 \times A}{g \times t \times \text{gain}} = \frac{50 \times 5 \times 5 \times 10^{-6}}{0.025 \times 2 \times 10^{-3} \times 250} = 0.1 \text{ N}$$