	ASS T	ES	r			S.No. : 01		CS_W+Y_0 al Logic	60719
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
	CLASS TEST 2019-2020 COMPUTER SCIENCE & IT								
			Date	of Test	:06/	07/2019			
ANS	SWER KEY	>	Digital	Logic					
1.	(b)	7.	(c)	13.	(a)	19.	(b)	25.	(c)
2.	(d)	8.	(b)	14.	(c)	20.	(c)	26.	(b)
3.	(a)	9.	(b)	15.	(a)	21.	(d)	27.	(b)
4.	(a)	10.	(d)	16.	(d)	22.	(a)	28.	(a)
5.	(c)	11.	(d)	17.	(d)	23.	(a)	29.	(c)
6.	(b)	12.	(c)	18.	(b)	24.	(c)	30.	(b)

DETAILED EXPLANATIONS

1.	(b)
	Converting into decimal,
	$(2)_3 = 2 \times 3^\circ = 2$
	$(3)_4 = 3 \times 4^\circ = 3$
	$(14)_5 = 1 \times 5^1 + 4 \times 5^\circ = 9$
	$(15)_{6}^{-} = 1 \times 6^{1} + 5 \times 6^{\circ} = 11$
2.	(d)
	N = 5,
	$t_{pd} = 2 \text{nsec}$
	$ T = 2 N t_{pd} $ $ T = 2 \times 5 \times 2 \times 10^{-9} $
	$\Rightarrow T = 2 \times 5 \times 2 \times 10^{-9}$
	= 20 nsec
3.	(a)
	$Y = \bar{S}_0 \bar{S}_1 I_0 + S_0 \bar{S}_1 I_1 + \bar{S}_0 S_1 I_2 + S_0 S_1 I_3$
	$= \overline{A}\overline{B}C + \overline{A}B \cdot 1 + A\overline{B} \cdot 0 + AB \cdot \overline{C}$
	$= \overline{A}\overline{B}C + \overline{A}B \cdot (C + \overline{C}) + AB\overline{C}$
	$= \overline{A}\overline{B}C + \overline{A}BC + \overline{A}B\overline{C} + AB\overline{C}$
	≈ 001, 011, 010, 110
	$f(A,B,C) = \Sigma m(1,2,3,6)$
4.	(a)
	M = total number of states
	n = total number of FF's
	$M = 2^n$; Binary counter
	$M \leq 2^n$; Non-Binary counter
5.	(c)
	Range of signed 1's complement number is $-2^{n-1} + 1$ to $2^{n-1} - 1$.
6.	(b)
	$Y_1 = \overline{c}$
	$F = Y_2 = \overline{d}Y_1 + dC$
	$= \overline{d}\overline{c} + dc$

$$= c \odot d$$

7. (c)

Output of the 4 : 1 MUX circuit in Figure A is

$$Y = I_0 \overline{A}\overline{B} + I_1 \overline{A}B + I_2 \overline{A}\overline{B} + I_3 \overline{A}B$$

Output of the circuit in Figure ${\boldsymbol{B}}$ is

$$Y = A \oplus B \oplus C = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$$

On comparison

$$I_0 = C$$

$$I_1 = \overline{C}$$

$$I_2 = \overline{C}$$

$$I_3 = C$$

8. (b)

Simplifying boolean expression:

$$F = C(B + C) (A + B + C)$$

= (CB + CC) (A + B + C)
= (CB + C) (A + B + C)
= C(1 + B) (A + B + C)
= C(A + B + C)
= AC + BC + C
= C(1 + A + B)
= C

9. (b)

$$Y = I_0 \cdot \overline{S}_1 \overline{S}_0 + I_1 \cdot \overline{S}_1 S_0 + I_2 \cdot S_1 \overline{S}_0 + I_3 S_1 S_0$$

$$Y = A\overline{B} + (1)B = B + A\overline{B} = A + B$$

11. (d)

$= S_{2} S_{1} E S_{0} A_{3} A_{2} A_{1} A_{0}$	
1 st clock 1 1 1 1 - 15 <i>I</i>	, 7
2^{nd} 1 1 1 0 - 14 I_{0}	6
3 rd 1 1 0 1 – 13 0)
4 th 1 1 0 0 – 12 0)
5^{th} 1 0 1 1 - 11 I_{c}	5
6^{th} 1 0 1 0 - 10 I_{2}	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 1

For 1st and 2nd clock pulses, enable is 1

 $\begin{array}{cccccccc} S_2 & S_1 & S_0 \\ 1^{st} \mbox{ clock pulse } - & 1 & 1 & 1 & \rightarrow & 1_7 \\ 2^{nd} \mbox{ clock pulse } - & 1 & 1 & 0 & \rightarrow & 1_6 \\ \mbox{For } 3^{rd} \mbox{ and } 4^{th} \mbox{ clock pulse, enable is } 0, \\ \mbox{So, } Y \mbox{ is } 0 \end{array}$

12. (c)

The characteristics tabel with J, K, Q_n , Q_{n+1} and the excitation table for S and R is shown below –

J	К	Q _n	Q _{<i>n</i>+1}	S	R
0	0	0	0	0	×
0	0	1	1	×	0
0	1	0	0	0	×
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	×	0
1	1	0	1	1	0
1	1	1	0	0	1

India's Best Institute for IEB, GATE & PSUs

The K-map for S and R is shown as – For S,

$$S(J, K, Q_n) = \Sigma m(4, 6) + d(1, 5) = J\overline{Q}_n$$

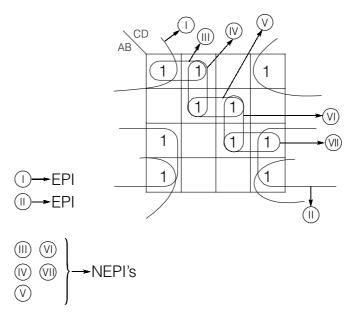
$$KQ_n$$

$$V = I = I = I$$

$$KQ_n = I = I$$

$$KQ_n = I = I$$

For R,


$$R(J, K, Q_n) = \Sigma m(3, 7) + d(0, 2) = KQ_n$$

0 × 1	10	11	01	00	\mathbf{k}
	×	1		×	0
1 1		1			1

$$R = KQ_n$$

 $S = J\overline{Q}_n$

13. (a)

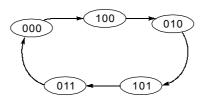
EPI = Essential Prime Implicant [which cover a minterm not covered by any other prime implicants] NEPI = Non Essential Prime Implicant. Number of EPI's = 2, number of NEPI's = 5.

14. (c)

Plotting the K-map for $Y = A\overline{B} + B\overline{C}$

$$\overline{BC} \quad \overline{BC} \quad BC \quad BC \quad B\overline{C}$$

$$\overline{A} \quad 0 \quad 1 \quad 3 \quad 1_{2}$$


$$A \quad 1_{4} \quad 1_{5} \quad 7 \quad 1_{6}$$

So, $\Sigma m (2, 4, 5, 6) = \text{SOP}$ $\Sigma \pi (0, 1, 3, 7) = \text{POS}$

15. (a)

Cleak	Present state			FF2		FF1	FF0
Clock	Q_2	Q ₁	Q_0	$J_2 = \overline{Q_0}$, K ₂ = 1	$D_1 = Q_2$	$T_0 = Q_1$
	0	0	0	1	1	0	0
1	1	0	0	1	1	1	0
2	0	1	0	1	1	0	1
3	1	0	1	0	1	1	0
4	0	1	1	0	1	0	1
5	0	0	0				

The number of used states = 5 \therefore modulus value = 5

16. (d)

lf

$$Z = (P+A)(Q+\overline{A})$$
$$\overline{Z} = PQ+AQ+\overline{A}P$$
$$Z = \overline{A}+B$$
$$\overline{Z} = \overline{A}+B$$
$$Q = \overline{B}, P=O$$

17. (d)

	Q_2	Q_1	Q ₀	Cr
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	0
	1	0	0	1

So the output Q_2 can be directly connected to clear. \therefore Best architecture is a wire connection.

18. (b)

		$S_1 S_0 - MUX$ inputs
Clock	S.I = Y	Q_3 Q_2 Q_1 Q_0
		0_0_1_1 - Initial
1	0	0 0 0 1 state
2	0	0 0 0 0
3	1	1 0 0 0
4	1	1 1 0 0
5	1	
6	1	
7	0	0 1 1 1
8	0	0 0 1 1

After 8 clock pulse.

19. (b)

Let the base be x, then

292 ₁₀ =	1204 <i>x</i>
=	$1 \times x^3 + 2 \times x^2 + 0 \times x^1 + 4 \times x^0$
=	292 ₁₀
=	$x^3 + 2x^2 + 4$
=	6 (By substitution)

20. (c)

Α	В	J	Κ	Q_{n+1}	
0	0	1	0	1	
0	1	1	1	\overline{Q}_n	
1	0	1	0	1	
1	1	0	1	0	
				$Q_{n+1} =$: /

$$Q_{n+1} = \overline{A}\overline{B} + A\overline{B} + \overline{A}B\overline{Q}_n$$
$$Q_{n+1} = \overline{B} + \overline{A}B\overline{Q}_n$$

$$= \overline{B} + \overline{A}\overline{Q}_n$$

21. (d)

			FFD	FFT
	Q _D	Q _T	$D = \overline{Q}_T$	$T = \overline{Q}_T \oplus Q_D$
Clock pulse	0	0	1	1
1	1	1	0	1
2	0	0	1	1
3	1	1	0	1
4	0	0		

So, output will either be 00 or 11 and never 10.

22. (a)

State table can be drawn from state diagram

Present state	Input	Next state
Q _n	Х	Q _{n + 1}
0	1	0
0	0	1
1	1	0
1	0	0

$$Q_{n+1} = \overline{Q_n + X}$$

 $(Q_{n+1} \text{ represent output of NOR gate})$

t Institute for IES, GATE & PSUs

23. (a)

In the circuit, we have

MADE EASY

$$D_0 = \overline{Q_1 Q_2} = \overline{Q}_1 + \overline{Q}_2$$
$$D_1 = Q_0$$
$$D_2 = Q_2$$

The truth table for the circuit is obtained below:

	Present State			Inputs			Next State		
CLK number	Q ₂	Q ₁	Q ₀	D_2	<i>D</i> ₁	D_0	Q_2^+	Q_1^+	Q_0^+
initial	0	0	0	-	-	-	-	-	-
1	0	0	0	0	0	1	0	0	1
2	0	0	1	0	1	1	0	1	1
3	0	1	1	1	1	1	1	1	1
4	1	1	1	1	1	0	1	1	0

After 4 clock pulses, output is $Q_2 Q_1 Q_0 = 110$

24. (c)

For $1^{st} 4 \times 1 MUX$,

$$I_{0} = C$$

$$I_{1} = \overline{C}$$

$$I_{2} = \overline{C}$$

$$I_{3} = C$$
So,
$$f_{1}(A, B, C) = \overline{ABC} + \overline{ABC} + \overline{ABC} + ABC$$

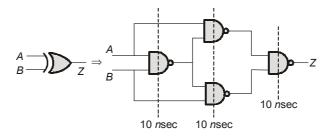
$$= \Sigma_{m}(1, 2, 4, 7)$$
For 2nd 4 × 1 MUX,
$$I_{0} = C$$

$$I_{1} = 1$$

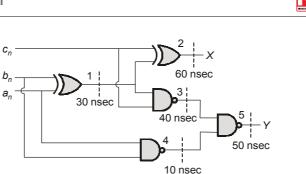
$$I_{2} = 0$$

$$I_{3} = C$$
So,
$$f_{2}(A, B, C) = \overline{ABC} + \overline{AB} \cdot 1 + A\overline{B} \cdot 0 + AB \cdot C$$

$$\Sigma_{m}(1, 2, 2, 7)$$


So,

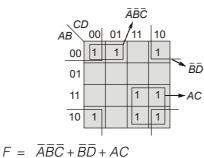
$$\Sigma_m(1, 2, 3, 7)$$


So, f_1 (A, B, C) represents the difference of full substractor while $f_2(A, B, C)$ represents the borrow of full substractor.

25. (c)

An Ex-OR gate can be represented as

So, for EX-OR gate, it will take 30 nsec to get the output.


So, to get the output Y, it will take 50 nsec.

26. (b)

			FF	0	FFI		
CLK	Q ₁	Q_0	$J_0 = \overline{Q}_1$	<i>K</i> ₀ = 1	$J_1 = Q_0$	$K_1 = \overline{Q}_0$	
	0	0	1	1	0	1	
1	0	1	1	1	1	0	
2	1	0	0	1	0	1	
3	0	0					
		→(0	0)(01	10 N = 3	3	

27. (b)

The k-map has to rearranged as

The MUX is in disable state. MUX is having active high enable, but E = 0, so that MUX is in disable state.

28. (a)

For the given 4×1 MUX, 'A' and 'B' are select lines and 'C' be the input

	I ₀	I_1	I_2	I_3
ō	5 0	2	4	6
C		3	5	7
	1	0	1	0
So, $I_0 = 1 = a$				
$I_1 = 0 = b$				
$I_2 = 1 = C$				
$I_3 = 0 = d$				
So, $a \oplus d = b \oplus c =$	= 1			
So, output of NAND gate is 0 i.e. MUX	' <i>E</i> ' co	nnec	ted t	o '0'.

Hence MUX output Z is equal to '0'.

made ea

India's Best Institute for IES, GATE & PSUs

29. (c)

Number of flip-flops for mod-16 ripple counter = 4

Maximum clock frequency =
$$\frac{10^9}{4p}$$
Hz = 5 MHz

$$p = \frac{10^9}{4 \times 5 \times 10^6} = \frac{1000}{20}$$
$$p = 50$$

30. (b)

$$X = (A \oplus B) (B \odot C) C$$

to get X = 1,

	$A \oplus B = 1$
	$B \odot C = 1$
	C = 1
for	$(ABC) = (101) \Rightarrow A \oplus B = 1, B \odot C = 0, C = 1 \Rightarrow X = 0$
for	$(ABC) = (011) \Rightarrow A \oplus B = 1, B \odot C = 1, C = 1 \Rightarrow X = 1$
for	$(ABC) = (111) \Rightarrow A \oplus B = 0, B \odot C = 1, C = 1 \Rightarrow X = 0$
for	$(ABC) = (110) \Rightarrow A \oplus B = 0, B \odot C = 0, C = 0 \Rightarrow X = 0$