

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

ELECTRONIC DEVICES

ELECTRONICS ENGINEERING

Date of Test: 06/08/2022

ANSWER KEY >

1.	(d)	7.	(a)	13.	(b)	19.	(a)	25.	(d)
2.	(b)	8.	(c)	14.	(b)	20.	(a)	26.	(c)
3.	(b)	9.	(c)	15.	(a)	21.	(c)	27.	(b)
4.	(c)	10.	(b)	16.	(c)	22.	(b)	28.	(c)
5.	(b)	11.	(b)	17.	(b)	23.	(c)	29.	(b)
6.	(c)	12.	(b)	18.	(d)	24.	(a)	30.	(b)

Detailed Explanations

1. (d)

Given,

Semiconductor bar length, L = 3 cm

$$V = 8 V$$

$$\mu_n = 1200 \text{ cm}^2/\text{V-sec}$$

$$v_d = \mu_n \cdot E$$

$$= \mu_n \cdot \frac{V}{L} = 1200 \times \frac{8}{3}$$

$$v_d = 3200 \, \text{cm/sec}$$

$$v_d = 3.2 \times 10^3 \, \text{cm/sec}$$

2. (b)

The Lattice scattering is related to the thermal motion of atoms.

 \therefore mobility varies as $T^{-3/2}$.

$$\mu \propto T^{-3/2}$$

Given, at
$$T_1$$
 = 300 K; μ_{n_1} = 1300 cm²/V-s

at
$$T_2 = 400$$
 K; $\mu_{n_2} = ?$

$$\frac{\mu_{n_1}}{\mu_{n_2}} = \left(\frac{T_1}{T_2}\right)^{-\frac{3}{2}}$$

$$\frac{1300}{\mu_{n_2}} = \left(\frac{300}{400}\right)^{-\frac{3}{2}}$$

$$\mu_{n_2} = \frac{1300}{1.5396}$$

$$\mu_{n_2} = 844.375$$

$$\mu_{n_2} \approx 844 \text{ cm}^2/\text{V-sec}$$

3. (b)

Given, optical power incident on photodiode is,

$$P_0 = 3 \,\mu\text{W}$$

$$I_p = 4 \mu A$$

$$R = \frac{I_P}{P_0} = \frac{4}{3} \text{ A/W} = 1.33 \text{ A/W}$$

$$I_C = \beta I_B + (1 + \beta)I_{CO}$$

$$\beta = \frac{\alpha}{1 - \alpha}$$

$$I_C = \beta I_B + \left(1 + \frac{\alpha}{1 - \alpha}\right) I_{CO} = \beta I_B + \frac{1 - \alpha + \alpha}{1 - \alpha} I_{CO}$$

$$I_C = \beta I_B + \frac{1}{1-\alpha} I_{CO}$$

5. (b)

Maximum efficiency of solar panel is,

$$\eta_{\text{max}} = \frac{P_{\text{max}}}{P_R}$$

where, Power received, $P_R = P_D \times \text{area} = 1000 \times 3 = 3000 \text{ W}$

$$\eta = \frac{400}{3000} = \frac{4}{30} \times 100 = 13.33 \%$$

6. (c)

Flat band voltage of MOS capacitor is,

Given,
$$V_{FB} = \phi_{ms} - \frac{Q_s}{C_{ox}}$$

$$V_{FB} = -1.5 \text{ V}$$

$$Q_s = 4.5 \times 10^{-8} \text{ C/cm}^2$$

$$C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}} = \frac{4 \times 8.85 \times 10^{-14}}{400 \times 10^{-8}}$$

$$\therefore C_{ox} = 8.85 \times 10^{-8} \text{ F/cm}^2$$

$$-1.5 = \phi_{ms} - \frac{4.5 \times 10^{-8}}{8.85 \times 10^{-8}}$$

$$\phi_{ms} = -0.992 \text{ V}$$

7. (a)

Zener breakdown voltage is less because in higher doping region, depletion layer width is small and a small reverse voltage is able to break the covalent bond and gives sudden increase in current.

Hence, zener breakdown voltage V_1 corresponds to point A.

8. (c)

We know that,

where,
$$P = p_0 + G_L \tau_p$$

$$P = \text{Steady state minority concentration}$$

$$P = \text{Steady state minority concentra$$

:.

9. (c)

Given, resistivity,

$$\rho = 1.5 \Omega$$
-cm

Hall coefficient,

$$R_H = -1250 \,\text{cm}^3/\text{C}$$

Since, R_H is negative, the charge carriers are electrons.

Mobility,

$$\mu_e \approx \sigma |R_H|$$

$$=\frac{1}{\rho}|R_H|=\frac{1}{1.5}\times 1250$$

:.

$$= 833 \text{ cm}^2/\text{V-sec}$$

10. (b)

Given, MOSFET is operated in saturation region and channel length modulation is present,

$$\therefore \text{ Drain current,} \qquad I_D = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 [1 + \lambda V_{DS}] \qquad \dots (i)$$

Drain to source conductance,

$$g_{ds} = \frac{\partial I_D}{\partial V_{DS}} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2 (\lambda) \qquad ...(ii)$$

From equation (i), we can write,

$$\frac{I_D}{1 + \lambda V_{DS}} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_T)^2$$

We can re-write equation (ii) as,

$$g_{ds} = \frac{I_D}{1 + \lambda V_{DS}} \cdot \lambda$$

or,

$$g_{ds} = \frac{I_D}{\frac{1}{\lambda} + V_{DS}}$$

11. (b)

Given,

Depletion layer width,

$$W_1 = 3 \,\mu\text{m}$$

Reverse bias voltage, $|V_{R1}| = 1.5 \text{ V}$

But potential at the junction,

$$V_j = V_{bi} + V_R$$

For abrupt pn junction depletion width,

$$W \propto V_j^{1/2}$$

:.

$$W \propto \sqrt{V_{bi} + V_R}$$

$$\frac{W_1}{W_2} = \frac{\sqrt{V_{bi} + V_{R1}}}{\sqrt{V_{bi} + V_{R2}}}$$

It is also given that,

$$W_2 = 2W_1 = 6 \,\mu\text{m}$$

$$|V_{R2}| = 7.5 \text{ V}$$

$$\frac{3}{6} = \frac{\sqrt{V_{bi} + 1.5}}{\sqrt{V_{bi} + 7.5}}$$

$$\sqrt{V_{bi} + 7.5} = 2\sqrt{V_{bi} + 1.5}$$

$$V_{bi} + 7.5 = 4(V_{bi} + 1.5)$$

$$3V_{bi} = 1.5$$

$$V_{bi} = 0.5 \text{ V}$$

12. (b)

Diffusion potential (or) built in potential,

 V_{bi} = Area under the electric field distribution curve = Area under given curve (which resembles triangle)

$$V_{bi} = \frac{1}{2} \times \text{Base} \times \text{height} = \frac{1}{2} \times (W_P + W_N) \times (-E)$$

magnitude of diffusion potential

$$|V_{bi}| = \left| \frac{1}{2} \times (W_P + W_N) \times (-E) \right|$$
$$= \frac{1}{2} \times 4 \,\mu\text{m} \times 15 \times 10^4 \text{ V/m}$$
$$|V_{bi}| = 0.3 \text{ V}$$

13.

As drain is connected to gate for both MOSFETs, they will be in saturation mode of operation.

i.e.,
$$\begin{split} I_{D1} &= I_{D2} \\ K_1(V_{GS1} - V_T)^2 &= K_2(V_{GS2} - V_T)^2 \\ \text{Since, } K & \approx W \; ; \; K_2 = 2K_1 \\ K_1(V_{GS1} - V_T)^2 &= 2K_1(V_{GS2} - V_T)^2 \\ \text{But} & V_{GS1} = 5 - V_0 \\ V_{GS2} &= V_0 \\ (5 - V_0 - 1.5)^2 &= 2(V_0 - 1.5)^2 \\ 3.5 - V_0 &= \sqrt{2} \left(V_0 - 1.5\right) \\ 3.5 - V_0 &= \sqrt{2} \left(V_0 - 2.12\right) \\ 2.414 V_0 &= 5.62 \\ V_0 &= 2.33 \; V \end{split}$$

14. (b)

$$C_{T} \propto \frac{1}{\sqrt{V_{bi} + V_{RB}}}$$

$$\frac{C_{T1}}{C_{T2}} = \frac{\sqrt{V_{bi} + V_{RB2}}}{\sqrt{V_{bi} + V_{RB1}}}$$

$$V_{RB1} = 0 \text{ V}, \qquad C_{T1} = 1 \text{ } \mu\text{F}.$$

$$V_{RB2} = -6 \text{ V}, \qquad C_{T2} = 0.5 \text{ } \mu\text{F}.$$

at

at

$$\frac{C_{T1}}{C_{T2}} = \frac{\sqrt{V_{bi} + V_{RB2}}}{\sqrt{V_{bi} + V_{RB1}}}$$

$$\frac{1}{0.5} = \sqrt{\frac{-6 + V_{bi}}{V_{bi}}}$$

$$V_{bi} = -2 \text{ V}$$

15. (a)

:.

We know that,

the net hole density varying along 'x' is

$$P_{n}(x) = P_{no} + G_{L}\tau_{P}$$
but,
$$G_{L} = G_{LO}\left[1 - \frac{x}{L}\right]$$

$$\therefore P_{n}(x) = P_{no} + G_{LO}\tau_{P}\left[1 - \frac{x}{L}\right]$$

At the middle of the silicon bar, the hole density (i.e., at $x = \frac{L}{2}$)

$$P_{0}(x)|_{x=\frac{L}{2}} = P_{no} + G_{LO} \tau_{P} \left[1 - \frac{x}{L} \right]$$
Given
$$P_{0}(x)|_{At \, x = \frac{L}{2}} = 10^{9} \, \text{cm}^{-3}$$

$$P_{no} = 10^{8} \, \text{cm}^{-3}$$

$$10^{9} = 10^{8} + 10^{15} \tau_{P} \left[1 - \frac{1}{2} \right] \qquad \because x = \frac{1}{2}(L)$$

$$\tau_{P} = \frac{10^{9} - 10^{8}}{\frac{1}{2} \times 10^{15}} = 1.8 \times 10^{-6} \, \text{sec}$$

16. (c)

We know that, by mass action law, $np = n_i^2$ as per the charge neutrality,

$$N_D + p = N_A + n$$

for the addition of donor impurities,

$$N_A \approx 0$$

$$N_D + p = n$$

$$p = n - N_D$$

$$(n - N_D)n = n_i^2$$

$$n^2 - nN_D - n_i^2 = 0$$

$$n = \frac{N_D \pm \sqrt{N_D^2 + 4n_i^2}}{2}$$

$$n = \frac{N_D}{2} \pm \sqrt{n_i^2 + \left(\frac{N_D}{2}\right)^2}$$

The new concentration should be more than impurity concentration,

$$n = \frac{N_D}{2} + \sqrt{n_i^2 + \left(\frac{N_D}{2}\right)^2} = \frac{10^{18}}{2} + \sqrt{(1.5 \times 10^{10})^2 + \left(\frac{10^{18}}{2}\right)^2}$$
$$= 1 \times 10^{18} \text{ cm}^{-3}$$

17.

Given, MOSFET operating in saturation region,

Drain current,
$$I_D = \frac{\mu_n C_{ox} W}{2L} (V_{gs} - V_{th})^2 \qquad ...(i)$$

 $g_m = \frac{\partial I_D}{\partial V_{\sigma s}}$ Transconductance,

$$g_m = \frac{\partial}{\partial V_{gs}} \left[\frac{\mu_n C_{ox} W}{2L} (V_{gs} - V_{th})^2 \right]$$

$$g_m = \frac{\mu_n C_{ox} W}{L} (V_{gs} - V_{th}) \qquad ...(ii)$$

Now divide equation (i) by equation (ii),

$$\frac{I_D}{g_m} = \frac{V_{gs} - V_{th}}{2}$$

$$V_{gs} - V_{th} = \frac{2I_D}{g_m} = \frac{2 \times 1}{1} = 2 \text{ V}$$

18. (d)

We know that,

Diode voltage V_D decreases by 2.5 mV per 1°C rise in temperature.

Given, temperature, $T_1 = 20$ °C

$$\frac{\Delta V_D}{\Delta T} = -2.5 \text{ mV/}^{\circ}\text{C}$$

$$\frac{V_{D2} - V_{D1}}{(T_2 - 20)} = -2.5 \times 10^{-3}$$

$$\therefore \frac{(600 - 700) \times 10^{-3}}{-2.5 \times 10^{-3}} = T_2 - 20$$

$$T_2 = 60^{\circ}C$$

19. (a)

Given, resistance,
$$R_1 = 10 \ \Omega$$
 at $T_1 = 364 \ K$
 $R_2 = 100 \ \Omega$ at $T_2 = 333 \ K$

but,
$$R = \frac{\rho l}{A}$$
 $\therefore R \propto \rho$

but, resistivity
$$\rho = \frac{1}{n_i q[\mu_n + \mu_p]}$$

where, n_i is intrinsic carrier concentration

$$n_i = A_0 T^{3/2} e^{\frac{-E_{go}}{2kT}}$$

 \therefore $R \propto \rho \propto \frac{1}{n_i}$ [: given change due to temperature variation in n_i]

$$\therefore \qquad \qquad R \, \propto \, \frac{1}{n_i}$$

$$\frac{R_1}{R_2} = \frac{n_{i2}}{n_{i1}} = \frac{T_2^{3/2}}{T_1^{3/2}} e^{\frac{-E_{go}}{2} \left[\frac{1}{kT_2} - \frac{1}{kT_1} \right]}$$

$$\therefore \frac{10}{100} = \left(\frac{333}{364}\right)^{3/2} e^{\frac{-Ego}{2}\left[\frac{1}{kT_2} - \frac{1}{kT_1}\right]}$$

by taking 'ln' on both sides, we get

$$-\frac{E_{go}}{2} \left[\frac{1}{kT_2} - \frac{1}{kT_1} \right] = -2.17$$

$$\therefore \frac{E_{go}}{2}[2.95] = 2.17$$

$$E_{go} = 1.47 \text{ eV}$$

20. (a)

We know that,

Potential function,
$$\phi_s = V_T \ln \left(\frac{n_0}{n_i} \right)$$

or,
$$\phi_s = V_T \ln \left[\frac{N_D}{n_i} \right]$$

Let potential at 1 μ m distance is ϕ_{s1} ,

$$\therefore \qquad \qquad \phi_{s1} = V_T \ln \left[\frac{N_{D2}}{n_i} \right] \qquad \qquad \dots (i)$$

$$\phi_{s1} = V_T \ln \left[\frac{10^{16}}{n_i} \right]$$

Let potential at 2 μm distance is $\varphi_{s2\prime}$

$$\therefore \qquad \qquad \phi_{s2} = V_T \ln \left[\frac{N_{D1}}{n_i} \right] \qquad \qquad \dots (ii)$$

It is given magnitude of potential difference,

i.e.,
$$|\phi_{s1} - \phi_{s2}| = 0.12 \text{ V}$$

$$V_T \ln \left[\frac{N_{D2}}{N_{D1}} \right] = 0.12 \text{ V}$$

$$\frac{N_{D2}}{N_{D1}} = e^{\frac{0.12}{0.026}}$$

$$\Rightarrow N_{D1} = 9.89 \times 10^{13} \text{ cm}^{-3}$$

21. (c)

Given, acceptor concentration, $N_a = 10^{15}$ cm⁻³ Diffusion coefficient, $D_n = 35$ cm² sec⁻¹

Carrier life time, $\tau_n = 2.57 \mu sec$

By neglecting the contribution of n^+ -layer, we get,

Short circuit current,
$$I_s = \frac{qAD_n n_i^2}{L_n N_a}$$

where,
$$L_n = \sqrt{D_n \tau_n} = 9.48 \times 10^{-3} \text{ cm}$$

$$I_s = \frac{1.6 \times 10^{-19} \times 35 \times (1.5 \times 10^{10})^2}{9.48 \times 10^{-3} \times 10^{15}} = 1.33 \times 10^{-10} \text{ A}$$

$$\therefore I_L = 40.95 \text{ mA}$$

Open circuit voltage, $V_{OC} = V_T \ln \left| 1 + \frac{I_L}{I_c} \right|$

$$V_{OC} = 26 \times 10^{-3} \ln \left[1 + \frac{40.95 \times 10^{-3}}{1.33 \times 10^{-10}} \right]$$

$$V_{OC} = 0.51 \text{ V}$$

22. (b)

or,

Since two MOSFETs are operated in saturation mode,

$$I_{DN} = \mu_n C_{ox} \frac{W_n}{2L} (V_{GSN} - V_{TN})^2$$

$$I_{DN} = \mu_n C_{ox} \frac{W_n}{2L} (V_{OV})^2$$

where, overdrive voltage $V_{OV} = V_{GSN} - V_{TN}$

Similarly,
$$I_{DP} = \mu_p C_{ox} \frac{W_p}{2L} (V_{GSP} - V_{TP})^2$$

or,
$$I_{DP} = \mu_p C_{ox} \frac{W_p}{2L} (V_{OV})^2$$

where, overdrive voltage V_{OV} = V_{GSP} – V_{TP} given, I_{DN} = I_{DP}

$$\mu_n C_{ox} \frac{W_n}{2L} (V_{OV})^2 = \mu_p C_{ox} \frac{W_p}{2L} (V_{OV})^2$$

$$\therefore \frac{W_n}{W_p} = \frac{\mu_p}{\mu_n} = 0.4$$

In the given question, it is asking that,

$$\frac{W_p}{W_n} = \frac{1}{0.4} = 2.5$$

23. (c)

24. (a)

Now,
$$V_{bi} = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right) = (0.0259) \ln \left(\frac{2 \times 10^{16} \times 2 \times 10^{15}}{(1.5 \times 10^{10})^2} \right) = 0.671 \text{ V}$$

$$W = \left[\frac{2 \varepsilon (V_{bi} + V_R)}{q} \left[\frac{1}{N_A} + \frac{1}{N_D} \right] \right]^{\frac{1}{2}}$$

$$= \left[\frac{2(11.7) \times (8.85 \times 10^{-14})(0.671)}{1.6 \times 10^{-19}} \cdot \left[\frac{1}{2 \times 10^{16}} + \frac{1}{2 \times 10^{15}} \right] \right]^{\frac{1}{2}}$$

$$W = 0.691 \times 10^{-4} \text{ cm}$$

$$E_{\text{max}} = \frac{2(V_{bi})}{W} = \frac{2 \times 0.671}{0.691 \times 10^{-4}} = 1.94 \times 10^4 \text{ V/cm}$$

25. (d)

$$\sigma = (\mu_n + \mu_p)q \times n_i$$

$$10^{-6}$$

$$n_i = \frac{10^{-6}}{1600 \times 1.6 \times 10^{-19}}$$

$$n_i = 3.91 \times 10^9 \text{ atoms/cm}^3$$

now, $n_i^2 = N_c N_v \exp\left(\frac{-E_g}{kT}\right)$

$$E_g = kT \ln \left(\frac{N_c N_v}{n_i^2} \right)$$

$$= (0.0259) \ln \left(\frac{(10^{19})^2}{(3.91 \times 10^9)^2} \right)$$

$$E_g = 1.122 \text{ eV}$$

26. (c)

Fill factor of solar cell is,

F.F. =
$$\frac{\text{Maximum power obtained}}{V_{oc} \times I_{sc}}$$
$$0.65 = \frac{65 \times 10^{-3}}{V_{oc} \times I_{sc}}$$

$$V_{oc} \times I_{sc} = \frac{65 \times 10^{-3}}{0.65} = 100 \text{ mW}$$

 \therefore Option (c) satisfies the result ($V_{oc} \times I_{sc} = 40 \text{ mA} \times 2.5 \text{ V} = 100 \text{ mW}$)

27.

For compensated *n*-type semiconductor,

Given,
$$n_0 = N_D - N_A = N_C e^{-(E_C - E_{Fn})/kT}$$

$$N_D = 6.2 \times 10^{15} \text{ cm}^{-3}$$

$$N_A = 4.5 \times 10^{15} \text{ cm}^{-3}$$

$$N_C = 3 \times 10^{19} \text{ cm}^{-3}$$

$$1.7 \times 10^{15} = 3 \times 10^{19} e^{-(E_C - E_{Fn})/kT}$$

$$-(E_C - E_{Fn})/kT = -9.778$$

$$E_C - E_{Fn} = kT \times 9.778 = 0.244 \text{ eV}$$

$$E_{Fn} = E_C - 0.244 \text{ eV}$$

The new position of fermi level is 0.244 eV below the conduction band.

28. (c)

Given,
$$\mu_n C_{ox} \frac{W}{L} = 1.5 \times 10^{-3} \text{ A/V}^2$$

$$V_T = 0.65 \text{ V}$$

$$V_{GS} = 4 \text{ V}$$

$$V_{DS} = 6 \text{ V}$$

Power dissipation in the MOSFET is,

$$P = V_{DS} \times I_{DS}$$

where, I_{DS} is drain to source saturation current.

Since the MOSFET is operating in saturation region,

$$I_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_T)^2$$

$$= \frac{1}{2} \times 1.5 \times 10^{-3} (4 - 0.65)^2$$

$$I_{DS} = 8.42 \times 10^{-3} A$$

$$P = 6 \times 8.42 \times 10^{-3}$$

$$P = 50.50 \text{ mW}$$

© Copyright: MADE EASY

Power dissipation,

29. (b)

The steady state increase in conductivity,

$$\Delta \sigma = q(\mu_n + \mu_p)(\delta p)$$

In steady state, $\delta p = g' \tau_{po}$

where, g' is the uniform generation rate.

$$\therefore \qquad \Delta \sigma = q(\mu_n + \mu_p) (g' \tau_{po})$$

$$2 = (1.6 \times 10^{-19}) (8500 + 400)g' \times 10^{-7}$$

$$g' = 1.404 \times 10^{22} \text{ cm}^{-3} \text{ s}^{-1}$$

30. (b)

The raised concentration,

$$N_D = \frac{n_i^2}{N_A} e^{\Psi_s/V_T}$$

where, Ψ_s = surface potential = 0.65 V

The raised concentration,

$$N_D = \frac{(1.5 \times 10^{10})^2}{1.3 \times 10^{15}} \cdot \exp\left[\frac{0.65}{26 \times 10^{-3}}\right] = 1.246 \times 10^{16} \text{ cm}^{-3} \approx 1.25 \times 10^{16} \text{ cm}^{-3}$$