	LASS -	TES	бт —		S.	No. : 01 J	P_CS_01	0822			
		Indi		DE Institute fo		PSUs					
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna											
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612											
	DIS	CF	RET	EMA	THEM		CS				
		COMPUTER SCIENCE & IT									
	ſ	וחר				л.					
	(
	(DIENCE						
	(102									
ΔΝ											
AN	SWER KEY										
<u>AN</u>			Date)1/08/2022		25.	(d)			
	SWER KEY	>	Date	of Test : () 19.	2					
1.	SWER KEY (b)	>	(a) (b)	of Test : (13. (c) 19.) 20.	2 (a)	25.	(c)			
1. 2.	SWER KEY (b) (d)	> 7. 8. 9.	(a) (b)	of Test : (13. (c 14. (a) 19.) 20.) 21.	2 (a) (b)	 25. 26.	(c) (b)			
1. 2. 3.	SWER KEY (b) (d) (a)	 7. 8. 9. 10. 	(a) (b) (d)	of Test : C 13. (c 14. (a 15. (d) 19.) 20.) 21.) 22.	2 (a) (b) (b) (c)	 25. 26. 27.	(c) (b) (c)			

7

DETAILED EXPLANATIONS

1. (b)

G has 4 vertices

Maximum # of edges =
$$\frac{4(4-1)}{2} = 6$$
 Edges
 $2 * 2 + 1 + 3 = 2|E|$
 $\Rightarrow \qquad 4 + 1 + 3 = 2|E|$
 $\Rightarrow \qquad |E| = 4$

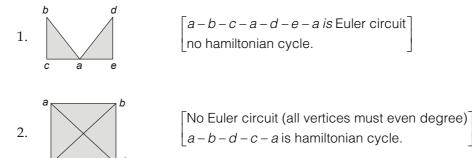
G has 4 edges

 \overline{G} has ${}^{4}C_{2} - 4 = 6 - 4 = 2$ Edges With 4 vertices and 2 edges, the graph is always disconnected.

2. (d)

 $\forall x \exists y \ P(x, y) \equiv \exists x \ \forall y \ (\sim P(x, y))$ $\forall x \ P(x) \equiv \exists x \ [\sim P(x)]$ $\neg \exists x \ \forall y \ [P(x, y) \lor Q(x, y) \equiv \forall x \ \exists y \ [\sim P(x, y) \land \sim Q(x, y)]$ \therefore All logical equivalents are correct.

3. (a)


d * c = d * (a * b)[Given, c = a * b] = (d * a) * b

[Associative holds in semigroup]

$$= b * b[Given, b * b = a] = a$$

4. (d)

If graph contain Euler circuit, it need not contain Hamiltonian cycle and vice-versa.

- (1) is Euler but not Hamiltonian graph.
- (2) is Hamiltonian but not Euler graph.

$$a_{n} = -4a_{n-1} + 12 a_{n-2}$$

$$a_{n} + 4a_{n-1} - 12 a_{n-2} = 0$$

$$x^{2} + 4x - 12 = 0$$

$$(x + 6) (x - 2) = 0$$

$$x = -6, x = 2$$

$$a_{n} = A(-6)^{n} + B \cdot (2)^{n}$$

...

6 (c)

Number of vertices = 11 In K_n each vertex can contain degree 10. In complement of G: (10-1, 10-1,10-2, 10-2, 10-3, 10-3, 10-3, 10-4, 10-5, 10-5) = (9, 9, 8, 8, 7, 7, 7, 7, 6, 5, 5) is degree sequence. So option (c) is correct.

7. (a)

- 1. $S = \{(x, y) : y = x + 1 \text{ and } 0 < x < 2\}$
- Check for Reflexive Relation:
 (x, x) : x = x + 1 but x ≠ x + 1
 Hence cannot be reflexive S is not equivalence relation on R.
- 2. T = {(x, y) : x y is an integer}
 Check for Reflexive Relation: (x, x) : x - x is integer x - x = 0 and 0 ∈ integer So, T is reflexive.
- Check for Symmetric Relation:
 (x, y): x y is integer and (y, x): y x also an integer.
 So, T is symmetric relation.
- Check for Transitive Relation:
 (x, y): x y is integer and (y, z): y z is integer then (x, z): x z is also integer. So, T is transitive.
 Hence T is equivalence relation but S is not.

8. (b)

"No students are allowed to carry smartphone" Can be written as: Not a student are allowed to carry smartphone $\equiv \neg [\exists x(\text{student } (x) \land \text{carry_smartphone } (x))]$ $\equiv \forall x(\neg \text{student } (x) [\lor \neg \text{carry_smartphone } (x))$ $\equiv \forall x(\text{student } (x) \rightarrow \neg \text{carry_smartphone } (x))$

So, option (b) is correct representation only.

9. (d)

$$f(x) = \frac{x}{x-1}$$

$$f \circ f(x) = \frac{\left(\frac{x}{x-1}\right)}{\left(\frac{x}{x-1}\right)-1} = \frac{\frac{x}{x-1}}{\frac{x-1}{x-1}} = \frac{\frac{x}{x-1}}{\frac{1}{x-1}}$$

i.e.

$$\underbrace{f \circ f}_{2 \text{ times}} (x) =$$

So,
$$f \circ (\underline{f \circ f \circ f \circ \dots \cdot f})(x) = f(x)$$

20 times

$$= \frac{x}{x-1}$$

х

MADE ERSY India's Best Institute for IES GATE & PSUe

10. (d)

- If a graph is connected, then its complement may or may not be disconnected. **Example:** cyclic graph on 5 vertices.
- Chromatic number of complete graph with *n* vertices is *n*.
- If two graph G_1 and G_2 are isomorphic, then their complements will always be isomorphic.
- If any simple graph with *n* nodes with nodes > 1, there are atleast two vertices of same degree.

11. (b)

Let

p : GATE rank is needed

q : I will write the GATE exam

r: I will join in MADEEASY.

Given arguments:

P1: If GATE rank is needed, i will not write GATE exam, if i do not join MADEEASY.

$$p \to (\sim r \to \sim q) = (p \land \sim r) \to \sim q$$

P₂: GATE rank is needed : *p*

P₃: I will join MADEEASY : r

Q: I will write the GATE exam : *q*

Inference is: $(p \land \neg r) \rightarrow \neg q$

We can also write the above inference as following: $(p \land \neg r)$

 $\left(\left[(p \land \neg r) \to \neg q\right] \land p \land r\right) \to q$

If above proposition is tautology then given inference is valid. ((pr')' + q')' + p' + r' + q = pr'q + p' + r' + q = p' + r' + q which is consistency hence invalid.

12. (a)

Total number of terms = 8 + 1 = 9The middle term is : 5^{th} term $(x + y)^n$ has $(r + 1)^{\text{th}}$ term as : ${}^nC_r x^{n-r} y^r$ $[(4 + 1)^{\text{th}}$ term] 5^{th} term is:

$${}^{8}C_{4}\left(\frac{y\sqrt{x}}{3}\right)^{8-4}\left(\frac{-3}{x\sqrt{y}}\right)^{4}$$

$$= {}^{8}C_{4} \cdot \frac{y^{4} \cdot x^{2}}{3^{4}} \cdot \frac{3^{4}}{x^{4} \cdot y^{2}}$$

$$= {}^{8}C_{4} \cdot \frac{y^{2}}{x^{2}}$$

$$= 70\left(\frac{y}{x}\right)^{2}$$

13. (c)

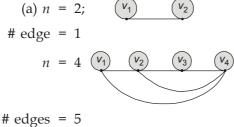
 $\forall x \in N \ [(x \neq 7 \land \operatorname{Prime}(x)) \rightarrow \neg \operatorname{Divisibleby7}(x)]$ $\forall x \in N \ [x = 7 \lor \neg \text{Prime } (x) \lor \neg \text{Divisibleby7}(x)]$ $\neg \exists x \in N \ [x \neq 7 \land Prime(x) \land Divisible by 7(x)]$ All represents that "no prime except 7 is divisible by 7".

14. (a)

Put x = y and y = x at the and to get inverse function

 $y = 2.2^{x} + 4^{x}$ $x = 2.2^{y} + 4^{y}$ \Rightarrow $x = 2.2^{y} + (2^{y})^{2}$ \Rightarrow $x+1 = (2^{y})^2 + 2 \cdot 2^{y} + 1$ \Rightarrow $x+1 = (2^y + 1)^2$ \Rightarrow $\sqrt{x+1} = 2^{y} + 1$ \Rightarrow $2^{y} = \sqrt{x+1} - 1$ \Rightarrow $\log 2^{y} = \log(\sqrt{x+1}-1)$ \Rightarrow $y \log 2 = \log(\sqrt{x+1} - 1)$ \Rightarrow $y = \frac{\log(\sqrt{x+1}-1)}{\log 2}$ \Rightarrow

15. (d)


- $R = \{\langle x, y \rangle \mid x \equiv y \mod m\}$ when x = y then $x \equiv x \mod m$ is always reflexive. •
- $R = \{\langle x, y \rangle \mid x \equiv y \mod m\} (x y) \mod m$ is always equal to $(y x) \mod m$. So relation is always • symmetric.
- $R = \{\langle x, y \rangle \mid x \equiv y \mod m\}$ if $(x y) \mod m$ is always equal to $(y z) \mod m$. Which is equal to • $(x - z) \mod m$ so relation is always transitive.

The given relation $R = \{\langle x, y \rangle \mid x \equiv y \mod m\}$ is equivalence relation (reflexive, symmetric and transitive).

16. (b)

Let

(b)

So option (b) is correct.

17. (a)

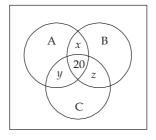
Everybody loves India: $\forall x$ Loves (x, India) **Everybody loves somebody:** $\forall x \exists y \text{ Loves } (x, y)$ **There is somebody whom everybody loves:** $\exists y \forall x \text{ Loves } (x, y)$ There is somebody whom no one loves: $\exists y \ \forall x \neg Love(x, y)$

India's Best Institute for IES, GATE & PSUs

18. (b)

- Set A is countable. Since Q (set of rational numbers) is countable and every subset of countable set is also countable.
- Set B is uncountable. Since every subset of real number is uncountable.
- Set C is countable because it is Cartesian product of two countable sets i.e. N × Z.
- Set D is countable. Since one to one correspondence with set of natural number Cantor's theorem.

19. (a)


Total children = 75

∴ Total receipt = ₹ 70 (₹ 0.50/ride)

 \therefore Total rides = 70 × 2 = 140

20 children had taken all the 3 rides

- :. 55 had taken at least 2 rides (2 or 3 rides).
- So, 55 20 = 35 had taken exactly 2 rides.

Let, x + y + z = 35

Children who had taken exactly one ride

Total single ride = $140 - (35 \times 2 + 20 \times 3)$

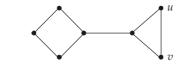
$$= 140 - (70 + 60) = 10$$

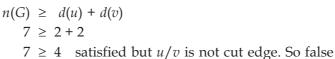
So, total number of students who took exactly singe ride = 10

Children who took no ride = 75 - (35 + 20 + 10)= 75 - (65) = 10

20. (b)

- *R* is not reflexive since ϕ is an element of power, set of any subset of A and $\phi \cap \phi = \phi$ and belongs to *R*.
- *R* is symmetric because intersection (\cap) is commutative, thus $a \cap b \neq \phi$ the $b \cap a \neq \phi$.
- *R* is not transitive because $a \cap b \neq \phi$ and $b \cap c \neq \phi$ does not assure $a \cap c \neq \phi$. **e.g.**, $a = \{1, 2\}$, $b = \{2, 3\}$ and $c = \{3, 4\}$


So, $\{1, 2\} \cap \{2, 3\} \neq \phi$

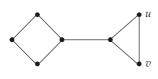

 $\{2, 3\} \cap \{3, 4\} \neq \phi$

but $\{1, 2\} \cap \{3, 4\} = \phi$ so **fail**.

21. (b)

(a) Consider a graph:

(b) Let, *G* be a graph such that |E_G| < |V_G| further, suppose G₁, G₂, G₂ _____ G_k are connected components of *G*, and if no connected component of *G* is a tree.
 Hence, for each 1 ≤ i ≤ k, |E_{Gi}| ≥ |V_{Gi}|. Thus,


$$|E_G| = \sum_{i=1}^k |E_{Gi}| \ge \sum_{i=1}^k |V_{Gi}| \ge |V_G|$$

Which is a contradiction. Hence, there exists a component of *G* which is tree. (c) Consider a graph:

Since graph is Eulerian graph but don't have eulerian circuit. So false

(d) Consider a graph:

Average degree (G) = $\frac{2e}{n}$

Before removal of $v' = \frac{20}{7} = 2.857$

 $a_n(1$

Average degree (G) =
$$\frac{2e}{n}$$

= 2.857 After removal of 'v' = $\frac{16}{6}$ = 2.66

So false

22. (c)

$$a_{n} = a_{n-1} + 3^{n-1}$$

$$a_{n} = \sum_{i=0}^{n} a_{i} x^{i}$$

$$= 1 + \sum_{i=1}^{n} a_{i} x^{i}$$

$$= 1 + \sum_{i=1}^{n} (a_{i-1} + 3^{i-1}) x^{i}$$

$$= 1 + \sum_{i=1}^{n} (a_{i-1} + x^{i}) + \sum_{i=1}^{n} (3^{i-1} x^{i})$$

$$= 1 + x \left[\sum_{i=0}^{n} a_{i} x^{i} \right] + x \left(\sum_{i=0}^{n} 3^{i} x^{i} \right)$$

$$a_{n} = 1 + x a_{n} + \frac{x}{1 - 3x}$$

$$- x) = 1 + \frac{x}{1 - 3x}$$

$$a_n = \frac{1 - 3x + x}{(1 - 3x)(1 - x)} = \frac{1 - 2x}{(1 - x)(1 - 3x)}$$
$$= \frac{A}{1 - x} + \frac{B}{1 - 3x} = \frac{\frac{1}{2}}{1 - x} + \frac{\frac{1}{2}}{1 - 3x}$$
$$a_n = \frac{1}{2}(1 + x + x^2 + x^3 \dots) + \frac{1}{2}(1 + 3x + (3x^2) + \dots)$$
$$= \frac{1}{2}(1 + 3^n)$$

23. (a)

P₁:
$$xyz^{-1}w = 1$$
, then $y = x^{-1}w^{-1}z$
Put $y = x^{-1}w^{-1}z$ in $xyz^{-1}w = 1$
 $x(x^{-1}w^{-1}z)z^{-1}w = 1$
 $w^{-1}z z^{-1}w = 1$
 $1 = 1$ Hence true
P₂: $xyz = 1$, then $xyz = 1$
Assume, $x = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, z = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$
 $xyz = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $yxz = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$
And $xyz \neq yxz$ Hence false

And

24. (b)

- Every cyclic group is Abelien group but every Abelien group is not cyclic group.
- Every group of prime order is cyclic group and we know that every cyclic group is Abelien ٠ group hence, every group of prime order is Abelien group.
- If (G, *) be a cyclic group of even order, then there exist at least one elements other than identity element such that $a^{-1} = a$.

25. (d)

- On empty set ϕ is an equivalence relation therefore S_1 is false. •
- In S_2 and relation is not transitive. ٠
 - e.g.

$$(2, 5) \in R \text{ as } 10 \ge 1$$
$$\left(5, \frac{1}{4}\right) \in R \text{ as } \frac{5}{4} \ge 1$$

but

 $\left(2,\frac{1}{4}\right)
ot \in R$ as $\frac{2}{4} < 1 \Rightarrow$ Not transitive So, both S_1 and S_2 are false.

26. (c)

a_k	$= -8a_{k-1} - 15a_{k-2}$	
<i>k</i> – 2	= 1	
k-1	= <i>n</i>	
and k	$n = n^2$	
Using characteristics equa	ition	
$n^2 + 8 + 15$	= 0	
n	= -3	
and n	= -5	
So, a_k	$= (-3)^k C_1 + (-5)^k C_2$	
	$= (-3)^{0}C_{1} + (-5)^{0}C_{2} = 0$	
$C_{1} + C_{2}$	= 0	(i)
a ₁	$= (-3)^{1}C_{1} + (-5)^{1}C_{2}$	
-	$= -3C_1 + (-5)C_2 = 2$	(ii)
Solving equation (i) and (i	ii), we get,	
C ₁	= 1	
and C_2	= -1	
then a_n	$= (-3)^k - (-5)^k$	
n		

27. (b)

- I is not D_{42} because the divisor 7 is missing. So, there is no way for I to be isomorphic to $(P\{a, b, c\}, \subseteq)$ as it needs to have 8 divisors but right now it has only 7.
- II is D₆₆ a well known boolean algebra and has 8 vertices and its masses diagram will be isomorphic • $(P(\{a,b,c\}),\subseteq).$
- III is not isomorphic even though it looks like D_{70} , it is on the relation \leq , resulting in a chain, which won't • be boolean algebra.

28. (c)

- G_1 has 6 items and G_2 has 5 cycles. Hence it can not be isomorphic. •
- G_3 and G_4 are also isomorphic.
- Hence the option (c) is correct.

29. (d)

Each ambulance "covers" the adjacent roads, and all roads are covered in this way.

30. (d)

This says that there is a bound, *m*, such that any twin prime is below m. In other words, that there only finitely many twin primes.

###