

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

ENVIRONMENT ENGINEERING

CIVIL ENGINEERING

Date of Test: 29/07/2022

ANSWER KEY 1. (d) 7. (c) 13. (c) 19. (a) 25. (c) 2. (a) 8. (b) 14. (b) 20. (b) 26. (a) 3. (d) (b) 15. (a) 21. (a) 27. (c) 4. (c) 10. (a) 16. (b) 22. (a) 28. (c) 5. (c) 11. (d) 17. (c) 23. (b) 29. (a) 6. (d) 12. (a) 18. (d) 24. (a) 30. (b)

DETAILED EXPLANATIONS

BOD = (Initial DO – Final DO) × Dilution factor
=
$$(9.36-6.2) \times \frac{100}{2.5} = 126.4 \text{ mg/}l$$

8. (b)

Sound pressure,
$$L = 20\log_{10} \frac{P_{\text{rms}}}{20\mu \text{Pa}} dB$$

$$L = 20\log_{10} \frac{2000}{20}$$

$$= 20\log_{10} 100$$

$$= 40 dB$$

So, resultant of two sound sources = 40 dB + 40 dB = 43 dB

9. (b)

Minimum hourly discharge =
$$\frac{1}{3}$$
 times average daily discharge

Minimum daily discharge = $\frac{2}{3}$ average daily discharge

10. (a)

Detention time,
$$t_d = \frac{V}{Q}$$
$$= \frac{10 \times 8 \times 1}{600} \times 60 = 8 \text{ minutes}$$

12. (a)

For Infiltration gallery,

where,
$$Q = kL \left(\frac{H^2 - h^2}{2R} \right)$$

$$Q = 600 \text{ m}^3/\text{day}$$

$$H = 6 \text{ m, } k = 100 \text{ m/day}$$

$$R = 100 \text{ m}$$

$$h = 6 - 4 = 2 \text{ m}$$

$$\therefore \qquad 600 \text{ m}^3/\text{day} = 100 \text{ m/d} \times L \text{ (in m)} \times \left(\frac{6^2 - 2^2}{2 \times 100}\right) \frac{\text{m}^2}{\text{m}}$$

$$\Rightarrow \qquad 600 = \left(100 \times L \times \frac{32}{200}\right)$$

$$\Rightarrow \qquad L = 37.5 \,\mathrm{m}$$

13. (c)

The drop manholes are provided in sewerage system when there is change in elevation of ground level.

16. (b)

Drift Velocity,
$$\omega = 3 \times 10^5 \times 5.0 \times 10^{-7} \,\text{m} = 0.15 \,\text{m/s}$$

For 99% efficiency

$$0.99 = 1 - \exp\left(-\frac{0.15}{Q} \times 307\right)$$

 $Q = 10 \,\mathrm{m}^3/\mathrm{sec}$

Now for, plate area required for 90% efficiency,

$$0.9 = 1 - \exp\left(-\frac{0.15}{10} \times A\right)$$

$$\Rightarrow A = 153 \,\mathrm{m}^2$$

17. (c)

Settling velocity,
$$V_S = \frac{g}{18} \frac{(G_S - 1)}{v} \times d^2$$
When
$$G_S = 2$$
Let
$$V_{S_1} = V_S$$

$$= \frac{g}{18} (2 - 1) \frac{d^2}{v}$$

$$V_S = \frac{g}{18} \frac{d^2}{v}$$
Now, if
$$G_S = 2.5$$
then
$$V_{S_2} = \frac{g}{18} (2.5 - 1) \frac{d^2}{v}$$

$$= 1.5 \times \frac{g}{18} \frac{d^2}{v} = 1.5 \times V_S$$

$$S_r + S_y = n$$

$$\frac{7.5}{100} + \frac{V_w}{1.25 \times 100 \times 10^6} = \frac{30}{100}$$

$$V_w = 0.028125 \times 10^9 \times m^3$$

$$= 28.125 \times 10^6 \text{ m}^3$$

19. (a)

> Sewage produced = 400000 l/day(: When water is solvent, 1 ppm = 1 mg/l)

5-day BOD of sewage = 140 mg/l

BOD of effluent = 15 ppm = 15 mg/l

BOD removed by pond = (140 - 15) = 125 ppm = 125 mg/l

:. Sewage produced per day

$$= 400000 \times 125$$
$$= 50 \times 10^6 \text{ mg} = 50 \text{ kg}$$

Organic loading rate = 25 kg/ha/day

∴ Required area =
$$\frac{\text{Sewage produced}}{\text{Organic loading rate}}$$

= $\frac{50}{25}$ = 2 ha

20. (b)

Detention period of stabilisation pond, $t_d = \frac{1}{K_D} \log_{10} \left(\frac{L}{L - Y} \right)$

$$= \frac{1}{0.1} \log_{10} \left(\frac{150}{150 - 0.85 \times 150} \right) = 8.24 \text{ days}$$

21. (a)

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

16 g 44 g

 \Rightarrow 16 g of CH₄ when completely oxidized leads to 44 g of CO₂. Given x kg of CH₄ when completely oxidized leads to 3.24 kg.

$$\Rightarrow$$
 44 kg CO₂ = 16 kg CH₄

$$\Rightarrow$$
 3.24 kg CO₂ = $\frac{16}{44} \times 3.24 = x$

$$x = 1.178 \text{ kg} \simeq 1.18 \text{ kg}$$

22. (a)

$$(100 - P_1) V_1 = (100 - P_2) V_2$$

$$\frac{V_2}{V_1} = \frac{100 - P_1}{100 - P_2}$$

$$\frac{V_2}{V_1} = \frac{100 - 97}{100 - 95} = \frac{3}{5} = 0.6$$

$$V_2 = 0.6 V_1$$
% decrease = $\frac{V_1 - V_2}{V_1} \times 100 = \frac{V_1 - 0.6 V_1}{V_1} \times 100 = 40\%$

23. (b)

Organic strengths of waste water cannot be determined using fixed solids, or dissolved oxygen only.

24. (a)

Unit operations	Unit process
ASP	Screening
Oxidation pond	Sedimentation
Anaerobic digestor	Grit removal

25. (c)

Daily BOD contributed by waste =
$$162 \times \frac{1000 \times 1000}{10^3} = 162,000 \text{ g/day}$$

Population equivalent = $\frac{162,000}{80} = 2025$

Ambient lapse rate =
$$\frac{21.25 - 15.70}{(444 - 4)} \times 1000$$

$$= 12.6 \text{ °C/km} > 9.8 \text{°C/km}$$

When the ambient lapse rate exceeds the adiabatic lapse rate, the ambient lapse rate is said to be super adiabatic.

27. (c)

$$Q = 432 \,\text{m}^3/\text{hr}$$

$$V_s = 0.12 \text{ cm/s} = 0.0012 \text{ m/s}$$

To remove 100% particle area =
$$\frac{432/3600}{0.0012}$$
 = 100 m²

.. To remove 90% of particles

Area =
$$100 \times 0.9$$

= 90 m^2

28. (c)

Equivalent weight of bicarbonate = 61

Milli equivalents of bicarbonate =
$$\frac{122}{61}$$
 = 2

 \therefore Alkalinity of water in terms of CaCO₃ = (Milli equivalents of bicarbonates) \times Equivalent weight of CaCO₃ = $2 \times 50 = 100 \text{ mg/}l$

29. (a)

Velocity gradient (
$$G$$
) = 600 s⁻¹

Volume of mixer
$$(V) = 2.0 \text{ m}^3$$

Absolute viscosity of fluid (μ) = 1 × 10⁻³ N-s/m²

$$P = G^2 \mu V$$

$$\therefore \quad \text{Power input per unit volume } \left(\frac{P}{V}\right) = \mu G^2$$

$$= 10^{-3} \times (600)^2 = 360 \text{ W}$$

30. (b)