CLASS TEST				S.No. : 01 SK_CS_ABCDE_250722					
MADE EASY									
India's Best Institute for IES, GATE & PSUs									
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna									
	Web:	www.m	adeeasy.in E	- mail: i	nfo@madeea	asy.in P I	h: 011-4512461	2	
ENGINEERING MATHEMATICS									
COMPUTER SCIENCE & IT									
	Date of Test : 25/07/2022								
AN	SWER KEY	>							
1.	(a)	7.	(b)	13.	(c)	19.	(c)	25.	(b)
2.	(d)	8.	(d)	14.	(a)	20.	(c)	26.	(d)
3.	(b)	9.	(d)	15.	(d)	21.	(c)	27.	(b)
4.	(c)	10.	(b)	16.	(b)	22.	(b)	28.	(c)
5.	(c)	11.	(b)	17.	(b)	23.	(a)	29.	(c)
6.	(d)	12.	(a)	18.	(b)	24.	(b)	30.	(a)

DETAILED EXPLANATIONS

1. (a)

$$\begin{bmatrix} 3 & 7.5 \\ -6 & 4.5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 6 \\ -90 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 7.5 & 6 \\ -6 & 4.5 & -90 \end{bmatrix}$$

$$R_2 + 2R_1$$

$$\begin{bmatrix} 3 & 7.5 & 6 \\ 0 & 19.5 & -78 \end{bmatrix}$$
or
$$19.5y = -78$$
or
$$y = -4$$

$$3x + 7.5y = 6$$

$$3x + 7.5(-4) = 6$$

$$3x = 36$$

$$\Rightarrow \qquad x = 12$$

$$\therefore \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 \\ -4 \end{bmatrix}$$

2. (d)

Mean, median and mode are all same (μ) for normal distribution.

3. (b)

4. (c)

The characteristic equation $|A - \lambda I| = 0$

 $\begin{vmatrix} 4-\lambda & 6\\ 2 & 8-\lambda \end{vmatrix} = 0$ i.e. $(4 - \lambda) (8 - \lambda) - 12 = 0$ or $32 - 8\lambda - 4\lambda + \lambda^2 - 12 = 0$ or $\lambda^2 - 12\lambda + 20 = 0$ \Rightarrow $\lambda^2 - 10\lambda - 2\lambda + 20 = 0$ \Rightarrow $(\lambda - 10) (\lambda - 2) = 0$ \Rightarrow $\lambda = 10, 2$ \Rightarrow Corresponding to $\lambda = 10$, we have $[A - \lambda I]x = \begin{bmatrix} -6 & 6\\ 2 & -2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix}$ -6x + 6y = 0Which gives, x = y \Rightarrow 2x - 2y = 0x = y \Rightarrow i.e. eigen vector $\begin{bmatrix} 1\\1 \end{bmatrix}$

Corresponding to λ = 2, we have

$$[A - \lambda I]x = \begin{bmatrix} 2 & 6 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Which gives, 2x + 6y = 0 i.e. eigen vector $\begin{vmatrix} -3 \\ 1 \end{vmatrix}$

5. (c)

 $\lim_{x \to \infty} \left[1 + \frac{3}{2x} \right]^{5x}$

Put limit $x \to \infty$ 1° from create, So, we know, for form 1°

 $\lim_{x\to\infty} f(x)^{g(x)} = e^{\left(\lim_{x\to\infty} (f(x)-1)\cdot g(x)\right)}$

Apply in given function:

$$= \lim_{x \to \infty} \left[1 + \frac{3}{2x} - 1 \right] 5x$$
$$= \lim_{x \to \infty} \left[\frac{3}{2x} \right] 5x$$
$$= e^{15/2}$$

6. (d)

Check for continuous:

$$\begin{array}{rcl} f(-2) &=& -1.5 \times (-2)^2 = -6 \\ f(-2^+) &=& 6(-2) -5 = -17 \\ f(-2^-) &=& -1.5 \times (-2)^2 = -6 \\ f(-2^-) &\neq& f(-2^+) \end{array}$$

Function is not continuous, hence cannot be differentiable i.e. differentiable \rightarrow continuous.

7. (b)

Applying Bayes Theorem:

So,

 $P(\text{spoke truth/reports 2}) = \frac{P(\text{spoke truth} \cap \text{reports 2})}{P(\text{reports 2})} = \frac{\frac{3}{5} \times \frac{1}{6}}{\frac{3}{5} \times \frac{1}{6} + \frac{2}{5} \times \frac{5}{6}} = \frac{3}{13}$

8. (d)

D = -96 for the given matrix

$$A = \begin{vmatrix} 4 & 12 & 0 \\ 8 & 24 & 16 \\ -4 & 0 & 8 \end{vmatrix} = 2^3 \begin{vmatrix} 2 & 6 & 0 \\ 4 & 12 & 8 \\ -2 & 0 & 4 \end{vmatrix}$$

(Taking 2 common from each row) $D_{2}t(A) = (2)^{3} \times 1^{3}$

$$Det(A) = (2)^{3} \times D = 8 \times (-96) = -768$$

9. (d)

.:.

$$\lim_{x \to 4} \frac{(2x)^{1/3} - 2}{2x - 8}$$

Above form is $\left(\frac{0}{0}\right)$ by putting the value x = 4Applying *L'* Hospital rule

$$= \lim_{x \to 4} \frac{\frac{1}{3}(2x)^{\left(\frac{1}{3}-1\right)} \times 2}{2} = \lim_{x \to 4} \frac{1}{3}(2x)^{\left(-\frac{2}{3}\right)}$$
$$= \frac{1}{3}(8)^{-2/3} = \frac{1}{12}$$

10. (b)

$$f(x) = x^{3} - 6x^{2} + 9x + 1$$

$$f'(x) = 3x^{2} - 12x + 9 = 0$$

$$x^{2} - 4x + 3 = 0$$

$$x^{2} - 3x - x + 3 = 0$$

$$x(x - 3) - 1(x - 3) = 0$$

$$(x - 1)(x - 3) = 0$$

$$x = 1, x = 3$$

$$f''(x) = 6x - 12$$
We need to check at all the extremum points i.e. 1, 3, 0, 5.
At 1, $f''(x) = -6 < 0$ (maximum)
At 3, $f''(x) = 6 > 0$ (minimum)
Taking into account all points:

$$f(0) = 1$$

$$f(1) = 5$$

$$f(3) = 1$$

$$f(5) = 21$$

Hence roughly graph can be drawn like:

Thus, maximum at 5 and minimum can be at 0 or 3.

11. (b)

We know that,
$$E(X) = 10$$

and $Var(X) = 25$
Now, $E(Y) = E(aX - b) = 0$
 $aE(X) - b = 0$
 $\Rightarrow a(10) - b = 0$
 $10a - b = 0$...(i)
Given, $Var(Y) = 1$
 $Var(aX - b) = a^2 Var(X) = 1$
 $\Rightarrow 25a^2 = 1$
i.e $a = \pm \frac{1}{5}$
 $a = \frac{1}{5}$ (taking positive values only)
By putting value of 'a' in equation (i)
We get $b = 2$

12. (a)

For rectangular distribution

Variance = $\frac{(b-a)^2}{12}$

Here,

:.

Variance =
$$\frac{\left(\frac{1}{2} - 0\right)^2}{12} = \frac{\frac{1}{4}}{12} = \frac{1}{4 \times 12}$$

 $a = 0, b = \frac{1}{2}$

Then standard deviation = $\sqrt{Variance}$

$$= \sqrt{\frac{1}{4 \times 12}} = \frac{1}{2\sqrt{12}}$$

13. (c)

Given matrix is
$$M = \begin{bmatrix} 12+9i & -i \\ i & 12-9i \end{bmatrix}$$

Determinant of $M = \begin{vmatrix} 12+9i & -i \\ i & 12-9i \end{vmatrix} = (12+9i)(12-9i) + i^2$
 $= (12^2 - 9^2i^2) + i^2$
 $= 225 - 1 = 224$
 \therefore Inverse of $M = M^{-1} = \frac{1}{|M|}(adjM)$
 $= \frac{1}{224} \begin{bmatrix} 12-9i & i \\ -i & 12+9i \end{bmatrix}$

14. (a)

Let, $A' = \{a_1, a_2, a_3, \dots, a_n\}$ There is an element a_1 of 'A' and two subsets 'P' and 'Q', then four possibilities

(a) $a_1 \in P$ and $a_1 \in Q$ (b) $a_1 \in P$ and $a_1 \notin Q$ (c) $a_1 \notin P$ and $a_1 \notin Q$ (d) $a_1 \notin P$ and $a_1 \notin Q$ 4 choices

Total number of ways selecting 'P' and 'Q' = 2^n

$$\Rightarrow \qquad 2^n \times 2^n = 4^n \text{ ways}$$

$$\Rightarrow \qquad n(S) = 4^n$$

Number of favorable elements = 3^n

$$P(E) = \frac{n(E)}{n(S)} = \frac{3^n}{4^n}$$

= (0.75)ⁿ

15. (d)

function f(x) is continuous for every $x \neq 0$ (since $\frac{x-c}{1+c}$ and $x^2 + c$ are polynomials, and polynomials are continuous).

$$f(0) = \frac{0-c}{1+c} = \frac{-c}{1+c}$$
$$\lim_{x \to 0^{-}} \frac{0-c}{1+c} = \frac{-c}{1+c}$$
$$\lim_{x \to 0^{+}} 0^{2} + c = c$$

Since f(x) is continuous for every *x*, hence continuous for x = 0.

$$\Rightarrow \qquad f(0) = \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$
$$\Rightarrow \qquad \frac{-c}{1+c} = c$$
$$\Rightarrow \qquad -c = c (1+c)$$
$$c^{2} + 2c = 0$$
$$c = -2 \text{ or } c = 0$$

So option (d) is correct answer

16. (b)

To check matrix is LU decomposible by checking if principal minors have non-zero determinants. **Check (a):**

$$\begin{vmatrix} A_1 \\ = \\ \begin{vmatrix} 1 \\ \end{vmatrix} = 1 \neq 0$$

$$\begin{vmatrix} A_2 \\ = \\ \begin{vmatrix} 1 \\ 2 \\ 4 \end{vmatrix} = 0$$

Now

So option (a) is not LU decomposible. Check (b):

$$\begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$$
 here $|A_1| = 3$, $|A_2| = \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} = 3 - 0 = 3$

So LU decomposible.

Check (c):

$$\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix} \text{ here } |A_1| = 0$$

So not LU decomposible. Check (d):

$$\begin{bmatrix} 1 & -3 & 7 \\ -2 & 6 & 1 \\ 0 & 3 & -2 \end{bmatrix}$$
 here $|A_1| = 1 \neq 0$ but
 $|A_2| = \begin{vmatrix} 1 & -3 \\ -2 & 6 \end{vmatrix} = |6-6| = 0$

So not LU decomposible.

17. (b)

P(G) represent given day mood is good. Let, P(S) represent given day is sunny.

So,

$$P(G | S) = \frac{P(G \cap S)}{P(S)}$$

$$P(G \cap S) = \frac{12}{30}$$

$$P(S) = \frac{16}{30}$$
So,

$$P(G | S) = \frac{\frac{12}{30}}{\frac{16}{30}} = \frac{12}{16} = \frac{3}{4}$$

18.	(b)
	• • •

Consider,

$$u = \cot x$$

$$\frac{du}{dx} = -\csc^2 x$$
$$du = -\csc^2 x \, dx$$
$$-du = \csc^2 x \, dx$$

Now new limits:

$$x = \frac{\pi}{6} \to u = \cot\frac{\pi}{6} = \sqrt{3}$$
$$x = \frac{\pi}{3} \to u = \cot\frac{\pi}{3} = \frac{1}{\sqrt{3}}$$

Substitute new limits and $\csc^2 x \, dx$

$$\int_{\sqrt{3}}^{1/\sqrt{3}} \frac{-du}{u^2} = \left[\frac{u^{-2+1}}{-2+1}\right]_{\sqrt{3}}^{1/\sqrt{3}} = \left[u^{-1}\right]_{\sqrt{3}}^{1/\sqrt{3}} = \sqrt{3} - \frac{1}{\sqrt{3}} = \frac{3-1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$$

19. (c)

$$\begin{split} \lim_{x \to 0} & \left(\frac{a^x + b^x + c^x}{3} \right)^{1/x} \\ &= \lim_{x \to 0} \left(\frac{3 + a^x + b^x + c^x - 3}{3} \right)^{1/x} \\ &= \lim_{x \to 0} \left(1 + \frac{a^x + b^x + c^x - 3}{3} \right)^{1/x} \\ &= \lim_{x \to 0} \left(1 + \frac{(a^x - 1) + (b^x - 1) + (c^x - 1)}{3} \right)^{1/x} \end{split}$$

We know that:

		Wea	ther	
	pc	Sunny	Not sunny	
M 1	Ğ	12	9	21
wood	Not Good	4	5	9
		16	14	30

$$\lim_{x \to 0} (1 + \lambda x)^{1/x} = e^{\lambda}$$

$$= e^{\lim_{x \to 0} \frac{(a^x - 1)}{3x} + \frac{(b^x - 1)}{3x} + \frac{(c^x - 1)}{3x}}{3x}} = e^{\lim_{x \to 0} \frac{1}{3} \left(\frac{a^x - 1}{x} + \frac{b^x - 1}{x} + \frac{c^x - 1}{x} \right)}$$

$$= e^{1/3} (\log a + \log b + \log c) \qquad \left[\because \lim_{x \to 0} \frac{a^x - 1}{x} = \log a \right]$$

$$= e^{1/3} \log (abc) = e^{\log (abc)^{1/3}} = (abc)^{1/3}$$

$$= \sqrt[3]{abc}$$

20. (c)

$$\begin{array}{c}
P_{1} & \frac{1 - {}^{12}C_{0}(1/2)^{0}(1/2)^{12}}{1} & \text{Target hit} \\
\end{array}$$

$$\begin{array}{c}
P_{1} & \frac{1 - {}^{12}C_{0}(1/2)^{0}}{1} & \text{Target hit} \\
\end{array}$$

$$\begin{array}{c}
P_{2} & \frac{1 - (1/2)^{9}}{1} & \text{Target hit} \\
\end{array}$$

$$P(\text{Target hit}) = \frac{8}{9} \left(1 - \frac{1}{2^{12}} \right) + \frac{1}{9} \left(1 - \frac{1}{2^9} \right)$$

So option (c) is correct answer.

21. (c)

$$AX = \lambda X$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 3 \\ -6 \end{bmatrix} = (-6) \begin{bmatrix} 3 \\ -6 \end{bmatrix}$$

$$3a - 6b = -18 \qquad \dots (i)$$

$$3c - 6d = 36 \qquad \dots (ii)$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 3 \\ -3 \end{bmatrix} = (-3) \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$$3a - 3b = -9 \qquad \dots (iii)$$

$$3c - 3d = 9 \qquad \dots (iv)$$

From equation (i) and (iii), a = 0 and b = 3. From equation (ii) and (iv), c = -6 and d = -9.

 $\therefore \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ -6 & -9 \end{bmatrix}$

22. (b)

 $y = 7x^2 + 12x$ Using Lagrange's mean value theorem: At x = 1, y = 7 + 12 = 19x = 3, y = 63 + 36 = 99

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$
$$= \frac{99 - 19}{3 - 1} = 40$$

So option (b) is correct answer.

23. (a)

Since, $\sum_{x=0}^{4} P(x) = 1$ $c + 2c + 2c + c^{2} + 5c^{2} = 1$ $6c^{2} + 5c - 1 = 0$ $c = \frac{1}{6}, -1$

Since $P(x) \ge 0$, the possible value of

$$c = \frac{1}{6}$$

x	0	1	2	3	4
$P(\gamma)$	1	2	2	1	5
1 (л)	6	6	6	36	36
x D(x)	0	2	4	3	20
$\mathcal{X}^{F}(\mathcal{X})$	0	6	6	36	36

Mean =
$$\sum_{x=0}^{4} xP(x) = 0 + \frac{2}{6} + \frac{4}{6} + \frac{3}{36} + \frac{20}{36} = \frac{59}{36} = 1.638$$

Variance = $\sigma^2 = E(x^2) - [E(x)]^2$
= $\left[0\left(\frac{1}{6}\right) + 1\left(\frac{2}{6}\right) + 4\left(\frac{2}{6}\right) + 9\left(\frac{1}{36}\right) + 16\left(\frac{5}{36}\right) - \left(\frac{59}{36}\right)^2\right] = 1.45$

24. (b)

$$f(x) = (x^{2} - 4)^{2}$$

$$f'(x) = 2(x^{2} - 4) \times 2x$$

$$= 4x(x^{2} - 4) = 0$$

$$x = 0, x = 2 \text{ and } x = -2 \text{ are the stationary points}$$

$$f''(x) = 4[x(2x) + (x^{2} - 4) \times 1]$$

$$= 4[(2x^{2} + (x^{2} - 4]) = 4[3x^{2} - 4]]$$

$$= 12x^{2} - 16$$

$$f''(0) = -16 < 0 \qquad (\text{So maxima at } x = 0)$$

$$f''(2) = (12)2^{2} - 16 = 32 > 0 \qquad (\text{So minima at } x = 2)$$

$$f''(-2) = 12(-2)^{2} - 16 = 32 > 0 \qquad (\text{So minima at } x = -2)$$

:. There is only one maxima and only two minima for this function.

25. (b)

٠

• $ABA^{-1} = B$ given,

 \Rightarrow *AB* = *BA* since matrix multiplication is not commutative. So false even if *A* is invertible.

A is idempotent, so
$$A^2 = A$$
, since A is non-singular, so it is invertible i.e. A^{-1} exist.

$$I = A^{-1} \cdot A = A^{-1} \cdot A^2 = IA = A$$

So *A* must be identity matrix. So true.

- If coefficient matrix A is invertible for Ax = b then $x = A^{-1}$ unique solution exist. So false
- If *B* is zero matrix, then also AB = B = zero matrix. So false

26. (d)

The characteristic equation is $|A - \lambda I| = 0$

i.e.,
$$\begin{vmatrix} 4-\lambda & 5\\ 2 & 8-\lambda \end{vmatrix} = 0$$
$$(4-\lambda)(8-\lambda) - 10 = 0$$
$$\lambda^2 - 12\lambda + 20 = 0$$
$$(\lambda - 10)(\lambda - 2) = 0$$
$$\lambda = 10, 2$$

Corresponding to λ = 10, we have

$$[A - \lambda I]X = \begin{bmatrix} -6 & 6\\ 2 & -2 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix}$$

ves
$$\begin{bmatrix} -6a + 6b = 0\\ 2a - 2b = 0 \end{bmatrix} a = b$$

which gives

i.e., eigen vector can be the answer and is present in one of the option (d). Similarly $\lambda = 2$ also have eigen vectors i.e. not mentioned in any options.

27. (b)

$$x + \frac{50}{x} > 15$$

$$\Rightarrow \qquad x^2 - 15x + 50 > 0$$

$$x^2 - 5x - 10x + 50 > 0$$

$$(x - 5)(x - 10) > 0$$

Cases:
(i) $x > 5$ and $x > 10 \Rightarrow x > 10$
(ii) $x < 5$ and $x < 10 \Rightarrow x < 5$
So,

$$x < 5 = \{1, 2, 3, 4\}$$

$$x > 10 = \{11, 12, 13,, 20\}$$

So, total favourable cases: $4 + 10 = 14$

The required probability = $\frac{14}{20}$

28. (c)

$$P = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix}$$

$$A = PDP^{-1} = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -6 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -12 \\ 0 & -2 \end{bmatrix}$$

$$A^{2} = A \times A = \begin{bmatrix} 2 & -12 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 2 & -12 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$$

$$A^{4} = A^{2} \times A^{2} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix}$$

$$A^{5} = A^{4} \times A = \begin{bmatrix} 16 & 0 \\ 0 & 16 \end{bmatrix} \begin{bmatrix} 2 & -12 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 32 & -192 \\ 0 & -32 \end{bmatrix}$$

29. (c)

$$A = \begin{bmatrix} p & q \\ r & s \end{bmatrix}$$
$$B = \begin{bmatrix} p^2 + q^2 & pr + qs \\ pr + qs & r^2 + s^2 \end{bmatrix} = AA^t$$

There are three cases for the rank of *A*.

Case I: rank (A) = 0

 \Rightarrow *A* is null. So, *B* = *AA*¹ also has to be null and hence rank (B) is also equal to 0. Therefore in this case rank (*A*) = rank (*B*).

Case II : rank
$$(A) = 2$$

So, *A* has to be non-singular, i.e., $|A| \neq 0$. Therefore, $|B| = |A|^2$ is also $\neq 0$. So, rank (*B*) = 2. Therefore, in this case also rank (*A*) = rank (*B*).

Therefore, in all three cases rank (A) = rank (B). So, rank of A is N, then the rank of matrix B is also N.

30. (a)

Augmented matrix:

$$\begin{bmatrix} A \mid B \end{bmatrix} = \begin{bmatrix} 8 & 3 & -2 & | & 8 \\ 2 & 3 & 5 & | & 9 \\ 2 & 3 & \lambda & | & \mu \end{bmatrix}$$
$$\begin{matrix} R_3 \leftarrow R_3 - R_2 \\ R_2 \leftarrow 4R_2 - R_1 \\ \begin{bmatrix} 8 & 3 & -2 & | & 8 \\ 0 & 9 & 22 & | & 28 \\ 0 & 0 & \lambda - 5 & | & \mu - 9 \end{matrix}$$

If $\lambda = 5$ and $\mu \neq 9$, then system has no solution because Rank[$A \mid B$] \neq Rank [4].