S.No.: 05 GH1\_ME\_B\_240619

**Engineering Mechanics** 



# MADE ERSY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

# CLASS TEST 2019-2020

# MECHANICAL ENGINEERING

Date of Test: 24/06/2019

| ANSWER KEY | Engineering Mechanics |     |     |     |     |     |     |     |
|------------|-----------------------|-----|-----|-----|-----|-----|-----|-----|
| 1. (a)     | 7.                    | (c) | 13. | (a) | 19. | (b) | 25. | (c) |
| 2. (b)     | 8.                    | (b) | 14. | (d) | 20. | (a) | 26. | (b) |
| 3. (a)     | 9.                    | (c) | 15. | (c) | 21. | (a) | 27. | (a) |
| 4. (b)     | 10.                   | (d) | 16. | (d) | 22. | (d) | 28. | (a) |
| 5. (b)     | 11.                   | (c) | 17. | (a) | 23. | (a) | 29. | (b) |
| 6. (b)     | 12.                   | (c) | 18. | (d) | 24. | (b) | 30. | (a) |

# **DETAILED EXPLANATIONS**

# 1. (a)

$$a = \frac{f}{m} = -\frac{bv}{m}$$
but,
$$a = v\frac{dv}{dx}$$

$$\therefore \frac{vdv}{dx} = -\frac{bv}{m}$$

(at time infinity means steady state)

$$\int_{u}^{0} dv = -\frac{b}{m} \int_{0}^{x} dx$$
$$-u = -\frac{b}{m} \times x$$
$$x = mu/b$$

# 2. (b)

 $\Rightarrow$ 

Resolving the forces in horizontal and vertical components.

Horizontal components, 
$$\Sigma F_{\chi} = 60 \cos 30^{\circ} - 80 \cos 45^{\circ} = -4.607$$
  
Vertical components,  $\Sigma F_{\gamma} = 80 \sin 45^{\circ} + 60 \sin 30^{\circ} = 86.568$   
Resultant,  $R = \sqrt{(\Sigma F_{\chi})^2 + (\Sigma F_{\gamma})^2} = \sqrt{(-4.607)^2 + (86.568)^2}$   
 $= 86.69 \text{ N}$ 

### 3. (a)

As the body is in equilibrium, using Lami's theorem

$$\frac{T_1}{\sin 90^{\circ}} = \frac{4 \times 9.81}{\sin (120^{\circ})}$$

$$\frac{T_1}{\sin 150^{\circ}} = \frac{4 \times 9.81}{\sin 150^{\circ}}$$

$$\frac{T_2}{\sin 150^{\circ}} = \frac{4 \times 9.81}{\sin 120^{\circ}}$$

$$T_2 = 22.65 \text{ N}$$



### 4. (b)

Consider joint (E)



$$F_{BF} = 60 \, \text{kN} \, \text{(Tensile)}$$

### 6. (b)

- :. The kinetic energy of the ring will be given by the potential energy of spring.
- :. Let V be the speed of the ring when the spring becomes vertical





$$\frac{1}{2}mV^{2} = \frac{1}{2}k[X]^{2}$$

$$X = \frac{5h}{4} - h = \frac{h}{4}$$

$$mV^{2} = k\left[\frac{h}{4}\right]^{2}$$

$$V = \frac{h}{4}\sqrt{\frac{k}{m}}$$

8. (b)

Using Lami's Theorem,

$$\frac{T_1}{\sin 120^\circ} = \frac{T_2}{\sin(360^\circ - (90^\circ + 120^\circ))}$$
$$\frac{T_1}{T_2} = \frac{\sin 120^\circ}{\sin 150^\circ} = 1.732$$

9. (c)



∵ Taking moments about A,

$$V_C \times 4 = 8 \times 1.5 + 12 \times 2$$
  
 $V_C = \frac{12 + 24}{4} = \frac{36}{4} = 9 \text{ kN}$ 

Reaction of support C,  $V_C = 9 \text{ kN}$ 

#### 10. (d)

Let u, v, w be the components of velocity in x, y and z direction respectively.

$$u = \frac{dx}{dt} = 2\cos t$$

Similarly,

$$v = -3 \sin t$$

$$w = \sqrt{5}\cos t$$

$$V = \sqrt{u^2 + v^2 + w^2}$$

$$= \sqrt{(2\cos t)^2 + (-3\sin t)^2 + (\sqrt{5}\cos t)^2}$$

$$V = \sqrt{4\cos^2 t + 9\sin^2 t + 5\cos^2 t}$$

$$V = \sqrt{9\left(\sin^2 t + \cos^2 t\right)} = 3 \text{ units}$$

#### 11. (c)

$$a = \frac{dv}{dt}$$

Let resisting force,

$$F = Kv^2$$

if *m* is mass of the bullet then,

$$a = \frac{F}{m} = \frac{Kv^2}{m}$$

$$\Rightarrow$$

$$\frac{dv}{dt} = \frac{Kv^2}{m}$$

$$\Rightarrow$$

$$\frac{1}{v^{-2}}dv = \frac{K}{m} \cdot dt$$

$$\Rightarrow$$

$$\left[\frac{v^{-1}}{-1}\right]_{u}^{v} = \frac{K}{m} \int_{0}^{t} dt$$

$$\Rightarrow$$

$$\left\lceil \frac{v - u}{uv} \right\rceil = \frac{K}{m}t$$

$$\Rightarrow$$

$$t = \frac{(u-v)}{uv} \times \frac{-m}{K}$$
$$t \propto (u-v) (uv)^{-1}$$

#### 12. (c)

The FBD of the blocks A and B are shown below







Here  $F_1$  and  $F_2$  are the spring forces.

$$F = k\Delta z = k (x_0 - x_{\text{unstretched}})$$
  
 $F_1 = 1000 \times (0.3 - 0.25) = 50 \text{ N}$ 

and

$$F_2 = 1000 \times (0.28 - 0.25) = 30 \text{ N}$$

At equilibrium,

 $\Sigma$ Forces along the plane for mass A = 0

$$\Rightarrow \qquad -F_1 + F_2 + m_A g \sin 30^\circ = 0$$

$$m_A = \frac{F_1 - F_2}{g \sin 30^\circ} = \frac{50 - 30}{9.81 \times 0.5} = 4.08 \text{ kg}$$

and  $\Sigma$ Forces along the plane for mass B = 0

$$\Rightarrow \qquad -F_2 + m_B g \sin 30^\circ = 0$$

$$m_B = \frac{F_2}{g \sin 30^\circ}$$

$$= \frac{30}{9.81 \times 0.5} = 6.12 \text{ kg}$$

13. (a)

K.E. = 
$$\frac{1}{2}I\omega^2$$
  

$$I = \frac{mr^2}{2} = \frac{20 \times (0.2)^2}{2} = 0.4 \text{ kgm}^2$$

$$\omega = \frac{2\pi N}{60} = \frac{2 \times 3.14 \times 500}{60} = 52.33 \text{ rad/s}$$
K.E. =  $\frac{1}{2} \times 0.4 \times 52.33^2 = 547.68 \text{ J}$ 

14. (d)

Let speed of car moving in opposite direction is V m/s.

From relative velocity approach

$$\frac{12}{V+50} = \frac{5}{60}$$

$$12 \times 60 = 5 V + 250$$

$$V = 94 \text{ km/hr}$$

15.

: Velocities are in opposite directions,

 $\therefore$  I will lie between A and B,

$$\frac{IA}{IB} = \frac{V_a}{V_b} = \frac{5}{3}$$

$$\frac{0.5 - IB}{IB} = \frac{5}{3}$$

$$IB = 0.1875 \text{ m}$$

$$IA = 0.3125 \text{ m}$$

$$\omega = \frac{V_A}{IA} = \frac{5}{0.3125} = 16 \text{ rad/s}$$





Alternatively,

$$V_A = V_C + R\omega$$

$$V_B = R\omega - V_C$$

$$V_C + R\omega = 5$$

$$R\omega - V_C = 3$$

$$V_C + 0.25 \omega = 5$$

$$0.25 \omega - V_C = 3$$
...(a)



On solving (a) and (b),

$$\omega = 16 \text{ rad/s}$$
  
 $V_C = 1 \text{ m/s}$ 

where  $V_C$  = velocity of centre C.

16. (d)

$$E = \frac{1}{2}I\omega^{2}$$

$$I = MR^{2}$$

$$E = \frac{1}{2}MR^{2}\omega^{2}$$

$$\frac{E_{1}}{E_{2}} = \frac{MR_{1}^{2}\omega^{2}}{MR_{2}^{2}\omega^{2}} = 4$$

17. (a)

$$I_y = I_x = \frac{1}{2}I_{\text{circle}} = \frac{1}{2} \times \pi \times \frac{D^4}{64} = \frac{\pi r^4}{8}$$

18. (d)

To keep centre of mass at C

$$m_1x_1 = m_2x_2$$

$$\rightarrow \qquad \text{(Let 10 kg} = m_1, 20 \text{ kg} = m_2\text{)}$$
and
$$m_1(x_1 - 15) = m_2(x_2 - d)$$

$$15 m_1 = m_2d$$

$$d = \frac{15 \times 10}{20} = 7.5 \text{ mm}$$



19. (b)



:. Taking moments about A,

$$R_b \times 5 = 30 \times 1.25$$



Considering joint A,

$$R_b = 7.5 \text{ kN}, \quad R_a = 30 - 7.5 = 22.5 \text{ kN}$$



$$\Sigma F_x = 0, \quad F_2 - F_1 \cos 60^\circ = 0$$

$$F_1 \sin 60^\circ - R_a = 0$$

$$F_1 = \frac{R_a}{\sin 60^\circ} = \frac{22.5}{\sin 60^\circ} = 25.97 \,\text{kN} \qquad \text{(compressive)}$$

$$F_2 = F_1 \cos 60^\circ = 12.99 \,\text{kN} \qquad \text{(tensile)}$$

:. AB is in tension.

#### 20. (a)

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 
$$g = \frac{4\pi^2 L}{T^2}$$
 In given problem 
$$T = \frac{36}{20} = 1.8 \text{ s}$$
 
$$g = \frac{4 \times \pi^2 \times 0.8}{1.8^2} = 9.74 \text{ m/s}^2$$

#### 21. (a)

*:*.

$$\theta = \omega_o t + \frac{1}{2} \alpha t^2 = \frac{1}{2} \alpha t^2$$

$$2.5 = \frac{1}{2} \alpha (1)^2$$

$$\alpha = 5 \text{ rad/s}^2$$

The angle rotated during 1st two second

$$= \frac{1}{2} \times 5 \times 2^2 = 10 \text{ radian}$$

then

Angle rotated during the 2<sup>nd</sup> second is

$$10 - 2.5 = 7.5 \, \text{radian}$$

#### 22. (d)

Let v be the speed of boatman in still water







Resultant of u and v should be along AB. Components of  $\vec{v}_b$  (absolute velocity of boatman) along x and y -direction are:

$$v_x = u - v \sin \theta, \ v_y = v \cos \theta$$

$$\tan 30^\circ = \frac{v_y}{v_x}$$

$$0.577 = \frac{v \cos \theta}{u - v \sin \theta}$$

$$0.577 u - 0.577 v \sin \theta = v \cos \theta$$

$$v = \frac{0.577 u}{0.577 \sin \theta + \cos \theta}$$

$$v = \frac{(0.577 \times \cos 30^\circ) u}{\sin 30^\circ \sin \theta + \cos 30^\circ \cos \theta}$$

$$v = \frac{0.49964}{\sin(\theta + 30^\circ)}$$

$$v \text{ is minimum at } \theta = 60^\circ,$$

$$v_{\text{min}} = 0.49964$$

$$v_{\text{min}} \simeq 0.54$$

# 23. (a)

Velocity of A is v along AB and velocity of particle B is along BC, its component

along 
$$BA$$
 is  $v\cos 60^\circ = \frac{v}{2}$ .

Thus separation AB decreases at the rate of

$$V + \frac{V}{2} = \frac{3V}{2}$$

Since this rate is constant, time taken in reducing separation from *AB* from *d* to zero is

$$t = \frac{d}{3v/2} = \frac{2d}{3v}$$



$$\Sigma M_A = 0$$

$$P \times a \sin 60^\circ = 2a \cdot R_{cv}$$

$$R_{cv} = 0.433 P \uparrow$$

$$R_{CH} = 0$$

$$R_c = 0.433 P$$

$$A \rightarrow (1)$$

$$\Sigma F_{y} = 0$$

$$R_{AV} = 0.433 P$$

$$\Sigma F_{x} = 0; R_{AH} = P$$

$$R_{A} = \sqrt{(0.433P)^{2} + P^{2}} = 1.09 P$$

$$B \rightarrow (4)$$

At joint E, members AE and EB are collinear and member DE is joined at E.

$$\Rightarrow \qquad F_{DE} = 0$$

$$D \to (3)$$

Taking section mm as shown,



$$\Sigma M_E = 0$$

$$\Rightarrow P \times a \times \sin 60^{\circ} = 0.433 P \times a \sin 30^{\circ} + F_{AD} \times a \sin 60^{\circ}$$

$$\Rightarrow 0.866P = 0.2165 P + 0.866 F_{AD}$$

$$\Rightarrow F_{AD} = P - 0.25 P = 0.75 P$$

25. (c)

 $C \rightarrow (2)$ 



Let

$$T = mg$$
 at angle  $\theta$  shown in figure 
$$h = l(1 - \cos \theta) \qquad ...(1)$$

Apply conservation of mechanical energy between points A and B,

$$\frac{1}{2}m(u^2 - v^2) = mgh$$

$$u^2 = gl \qquad ...(2)$$

$$v = \text{Speed of particle in position on } B$$

$$v^2 = u^2 - 2gh \qquad ...(3)$$

$$T - mg\cos\theta = \frac{mv^2}{l}$$

$$mg - mg\cos\theta = \frac{mv^2}{l}$$

$$v^2 = gl(1 - \cos\theta) \qquad ...(4)$$

Substituting the values of  $v^2$ ,  $u^2$  and h from equations (4), (2) and (1) in equation (3).

$$gl(1 - \cos \theta) = gl - 2gl(1 - \cos \theta)$$

$$\cos \theta = \frac{2}{3}$$

$$\theta = \cos^{-1}\left(\frac{2}{3}\right)$$
estituting  $\cos \theta = \frac{2}{3}$ 

Substituting 
$$\cos \theta = \frac{2}{3}$$
 in equation (4),  

$$V = \sqrt{\frac{gl}{3}}$$

#### 26. (b)

Given:

$$M = 2 \text{ kg and } m = 1 \text{ kg}$$



Let J be the impulse between ball and the wedge during collision and  $v_1$ ,  $v_2$  and  $v_3$  be the components of the velocity of the wedge and the ball in horizontal and vertical directions respectively.

$$J\sin 30^{\circ} = Mv_1 - mv_2$$

$$\Rightarrow \qquad \frac{J}{2} = 2v_1 - v_2 \qquad \dots (1)$$

$$J\cos 30^\circ = m(v_3 + v_o)$$

$$\Rightarrow \frac{\sqrt{3}}{2}J = V_3 + 2 \qquad \dots (2)$$

Relative speed of separation
Relative speed of approach = Coefficient of restitution

$$\frac{(v_1 + v_2)\sin 30^\circ + v_3\cos 30^\circ}{v_o\cos 30^\circ} = \frac{1}{2}$$

$$\Rightarrow \qquad v_1 + v_2 + \sqrt{3}v_3 = \sqrt{3} \qquad ...(3)$$

Solving equations (1), (2) and (3),

$$v_1 = \frac{-1}{\sqrt{3}} \text{ m/s}$$

$$v_2 = \frac{2}{\sqrt{3}} \text{ m/s and } v_3 = 0$$

Thus velocity of wedge =  $\frac{-1}{\sqrt{3}}\hat{i}$  m/s

Velocity of ball = 
$$\frac{2}{\sqrt{3}}\hat{i}$$
 m/s

#### 27. (a)

Boats A and B are moving with same speed 10 km/h in the directions shown in figure. It corresponds to a 2-dimensional, 2 body problem with zero acceleration.

$$\overrightarrow{V_{BA}} = \overrightarrow{V_B} - \overrightarrow{V_A}$$

$$|\overrightarrow{V_{BA}}| = \sqrt{(10)^2 + (10)^2} = 10\sqrt{2} \text{ km/h}$$





In can be assumed that A is at rest and B is moving with  $\overrightarrow{v_{BA}}$  in the direction shown



Minimum distance = 
$$AC = AB \sin 45^\circ = \frac{20}{\sqrt{2}} \text{ km} = 10\sqrt{2} \text{ km}$$

time is 
$$t = \frac{BC}{|\overrightarrow{V_{BA}}|} = \frac{10\sqrt{2}}{10\sqrt{2}} = 1 \text{ hr}$$

(a)
Here,  $\alpha = 45^{\circ}$ We have:  $a = \frac{dV}{dt} \Rightarrow a = \frac{dV}{dx} \times \frac{dx}{dt}$   $\therefore \qquad a = \frac{dV}{dx} \times V$ Also,  $a = \frac{mg \sin \alpha - \mu mg \cos \alpha}{m}$   $a = g[\sin \alpha - \mu \cos \alpha]$ 



$$g[\sin \alpha - \mu \cos \alpha] = \frac{dV}{dx} \times V$$

$$g[\sin \alpha \cdot dx - 5x \cos \alpha dx] = V \cdot dV$$
On integrating,

$$g\left[\sin\alpha \cdot x - 5\cos\alpha \times \frac{x^2}{2}\right] = \left[\frac{V^2}{2}\right]_0^0$$
$$g\left[\sin\alpha \cdot x - 5\cos\alpha \times \frac{x^2}{2}\right] = 0$$

$$\Rightarrow \sin\alpha \cdot x = 5\cos\alpha \times \frac{x^2}{2}$$

$$x = \frac{2\tan\alpha}{5} \Rightarrow \frac{2\tan 45^\circ}{5} = 0.4 \,\text{m}$$

29. (b)

We have, Torque = 
$$I\alpha$$
  
 $\therefore$  3 $F \sin 30^{\circ} \times 0.5 = I\alpha$ 

$$3 \times 0.5 \times \frac{1}{2} \times 0.5 = 1.5 \times \frac{0.5^2}{2} \times \alpha$$

$$\therefore \qquad \qquad \alpha = 2 \, \text{rad/s}^{-1}$$

$$\omega = \omega_0 + \alpha t$$

$$\omega = 0 + 2 \times 1$$
  
 $\omega = 2 \text{ rad s}^{-1}$ 

$$\omega = 2 \, \text{rad} \, s$$

30. (a)

$$a = \frac{dV}{dt}$$
$$\alpha \sqrt{V} = \frac{dV}{dt}$$

$$\Rightarrow \qquad \qquad \alpha \sqrt{V} = \frac{dV}{dt}$$

$$\Rightarrow \qquad \qquad \alpha \int_{t=0}^{t} dt = \int_{v_o}^{0} \frac{dv}{\sqrt{v}}$$

$$\alpha t = \frac{v_0^{-1/2+1}}{\frac{-1}{2}+1}$$

$$\Rightarrow \qquad \qquad t = \frac{2\sqrt{V_o}}{\alpha}$$

