CLASS	TEST

S.No.: 03 GH1_ME_A_230619 **Industrial Engineering** MADE EASY India's Best Institute for IES, GATE & PSUs Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612 CLASS TEST 2019-202 MECHANICAL ENGINEERING Industrial Engineering Date of Test : 23/06/2019 – Answer Key 📖 1. (C) 7. (a) 13. (c) 19. (b) 25. (c) 2. (d) 8. (C) 14. (a) 20. (a) 26. (c) 3. 9. 21. (c) (b) (a) 15. (b) 27. (c) 10. (b) 16. (b) 22. (b) 4. (a) 28. (a) 5. (d) 11. (a) 17. (d) 23. (c) 29. (b) 24. (b) 6. (C) 12. (d) 18. (d) 30. (b)

DETAILED EXPLANATIONS

1. (c)

At breakeven point : Selling price = fixed cost + variable cost $50000 \times SP = 200000 + 50000 \times 20$ SP = 4 + 20= ₹24 per unit

2. (d)

Processing time for one job (one unit) = 6 + 11 + 13 + 4 + 16 = 50 seconds Total available working time in a week = $7 \times 3600 \times 5 = 126,000$ seconds

No. of units produced on single workstation = $\frac{126,000}{50}$ = 2520 units

Minimum no. of workstations required = $\frac{9000}{2520} = 3.6 \approx 4$

5. (d)

For 6σ level \rightarrow Defects per million is limited to 3.4 We have 100 lakhs component, which means 10 million. For *P*, defects per million is 2.8 \leftarrow falls in 6 – σ level confromance For *Q*, defects per million is 4.0 For *R*, defects per million is 4.9

6. (c)

As per SPT rule, optional sequence is : 2 - 3 - 1Completion times of the jobs are : 8, 19 and 39 minutes respectively

Mean flow time =
$$\frac{8+19+39}{3} = 22$$
 minutes

8. (c)

Balance delay is the measure of line inefficiency due to imbalances in station times

$$d = \frac{nT_C - T_{WC}}{nT_C}$$
$$= \frac{5 \times 10 - (10 + 8 + 6 + 9 + 10)}{5 \times 10} = \frac{50 - 43}{50} = \frac{7}{50} = 0.14 \text{ or } 14\%$$

10. (b)

EOQ =
$$\sqrt{\frac{2AD}{H}}$$

D = $\frac{(EOQ)^2 \times H}{2A} = \frac{(385)^2 \times 0.30}{2 \times 6} = 3705.625 \approx 3706$ units

11. (a)

Option (a) pertains to loading and scheduling.

14. (a)

Standard time = Set up time + time per piece × nos. of pieces produced
=
$$35 + 8 \times 50 = 435$$
 minutes = 7 hours and 15 minutes
Efficiency of operator = $\frac{\text{Standard time} \times 100}{\text{Actual time}} = \frac{435 \times 100}{(6 \times 60 + 30)} = \frac{435}{390} \times 100 = 111.5\%$

15. (b)

Arrival rate,
$$\lambda = \frac{10}{8}$$
 per hours
Service rate, $\mu = \frac{60}{30} = 2$ per hour
Probability that the service is free $= 1 - \frac{\lambda}{\mu} = 1 - \frac{10}{8 \times 2} = \frac{6}{16}$
Expected idle time per day $= \frac{6 \times 18}{16} = 3$ hours
Length in the system, $L_S = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{10/8}{2 - (10/8)} = 1.67$ sets ≈ 2 sets

16. (b)

 $\lambda = 12$ trucks per hour, $\mu = 20$ trucks per hour

The probability that a truck has to wait is given by the probability that the service is busy.

Probability that service is busy =
$$\frac{\lambda}{\mu} = \frac{12}{20} = 0.6$$

Expected waiting time for a truck = $\frac{\lambda}{\mu(\mu - \lambda)} = \frac{12}{20(20 - 12)} = \frac{3}{40}$ hours or 4.5 minutes
The number of trucks arriving in a day (24 hours) is $24 \times 12 = 288$
As given, 50% belong to the contractor, i.e. 144 trucks.
Each truck wait for an average of 4.5 minutes

Total waiting time for the contractor's truck = $\frac{144 \times 4.5}{60}$ = 10.8 hours

17. (d)

$$\lambda$$
 = arrival rate = 5 jobs/minute
 μ = service rate = 8 jobs/minute

The mean steady state numbers of jobs in the system,

$$L_{S} = \frac{\lambda}{\mu - \lambda} = \frac{5}{8 - 5} = \frac{5}{3} = 1.67$$

19. (b)

Selling price,
$$S = ₹16$$

Variable cost, $V = ₹12$
Fixed cost, FC = ₹1,20,000
Break even point (units) = $\frac{FC}{S-V} = \frac{1,20,000}{16-12} = 30,000$ units
BEP as a percentage of capacity = $\frac{\text{Break-evensales}}{\text{Capacitysales}} = \frac{30,000}{50,000} = 60\%$

20. (a)

$$F_{t+1} = F_t + \alpha \left(D_{\text{April 2018}} - F_{\text{April 2018}} \right)$$

= 850 + 0.4 (900 - 850) = 850 + 0.4 × 50 = 870 units
$$F_{\text{June 2018}} = 870 + \infty (1030 - 870)$$

= 870 + 0.4 × 160 = 934 units

22. (b)

23. (c)

Product	Release Time	Processing Time	Start Time	Finish Time	Due Date	Tardiness
R	0	2	1	2	15	0
Р	0	3	2	5	10	0
S	1	5	5	10	11	0
Т	1	1	10	11	13	0
Q	2	4	11	15	9	6

Total tardiness = 6

24. (b)

Supply rate, $R = \frac{12000}{12} = 1000$ units/month Holding cost, $C_1 = ₹0.20$ per unit per month

Ordering cost, $C_3 = ₹350$ per order $EOQ = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2 \times 350 \times 1000}{0.2}} = 1870$ units / order

25. (c)

Holding cost, $C_1 = ₹0.08$ per unit per day Ordering cost, $C_3 = ₹400$ per order Supply rate, R = 100 units

EOQ,
$$q_0 = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2 \times 400 \times 100}{0.08}} = 1,000 \text{ units}$$

Length of cycle, to =
$$\frac{1000}{100} = 10$$
 days

As the lead time is 13 days and cycle length is 10 days, reordering should occur when the level of inventory is sufficient to satisfy the demand for 13 - 10 = 3 days

Reorder point = $100 \times 3 = 300$ units.

26. (c)

15)	20)	60)	
			700	700
5	40)	20)	000	1000
1000			200	1200
30)	10)	50)		
	1000		100	1100
				3000
1000	1000		1000	3000

Total cost = $5 \times 1000 + 10 \times 1000 + 60 \times 700 + 20 \times 200 + 50 \times 100$

= 5000 + 10000 + 42000 + 4000 + 5000

= ₹66,000

27. (c)

29. (b)

30. (b)

Step I: (Reducing the matrix by subtracting the minimum element of each row from all the elements of that row)

2	0	1	4
0	1	4	2
3	2	0	1
1	3	0	2

Step II:

	M_1	M_2	M_{3}	M_4	
J ₁	2	0	1	3	$J_{_1} \Rightarrow M_{_2}$
J_2	0	1	4	1	$J_{_2} \Rightarrow M_{_1}$
J_3	3	2		0	$J_{_3} \Rightarrow M_{_4}$
J_4	1	3	0	1	$J_{_4} \Rightarrow M_{_3}$

####