RANK IMPROVEMENT BATCH ELECTRONICS ENGINEERING

RIB-W | **T1**

Session 2019 - 20 | S.No. : 220619_LS1

ANSW	ER KEY	>	Dig	gital E	lectronics					
1.	(b)		7.	(b)	13.	(a)	19.	(c)	25.	(b)
2.	(c)		8.	(b)	14.	(b)	20.	(d)	26.	(c)
3.	(b)		9.	(d)	15.	(a)	21.	(b)	27.	(a)
4.	(d)		10.	(b)	16.	(b)	22.	(c)	28.	(c)
5.	(c)		11.	(a)	17.	(c)	23.	(c)	29.	(c)
6.	(c)		12.	(d)	18.	(b)	24.	(c)	30.	(b)

DETAILED EXPLANATIONS

1. (b)

Overall MOD = $3 \times 4 \times 5 = 60$ Lowest frequency is output frequency

$$f_{\rm out} = \frac{24 \times 10^6}{60} = 400 \,\rm kHz$$

2. (c)

Master slave configuration stores 1-bit of data.

3. (b)

It is a toggle flip-flop, the values toggle $Q: 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1$ \uparrow initial state

4. (d)

Excitation table

5. (c)

Using POS form

$$Z = (A+B+\overline{C})(\overline{A}+\overline{B}+\overline{C})$$
$$= (A+B)(\overline{A}+\overline{B})+\overline{C}$$
$$= A \oplus B + \overline{C}$$
$$= \overline{C} + (A \oplus B)$$

$$\overline{Y} = A + B + C$$

$$Y = \overline{A + B + C} = \overline{A}\overline{B}\overline{C}$$

$$= \Sigma m(0)$$

$$= \Pi M (1, 2, 3, 4, 5, 6, 7)$$

$$x \oplus y \oplus xy = (\overline{x}y + x\overline{y}) \oplus xy$$
$$= (\overline{x}y \oplus xy) + (x\overline{y} \oplus xy)$$
$$= y(x \oplus \overline{x}) + x(y \oplus \overline{y})$$
$$= y + x$$

8. (b)

$$Y = I_0 \cdot \overline{S}_1 \overline{S}_0 + I_1 \cdot \overline{S}_1 S_0 + I_2 \cdot S_1 \overline{S}_0 + I_3 S_1 S_0$$

$$Y = A\overline{B} + (1)B = B + A\overline{B} = A + B$$

10. (b)

11. (a)

·.·

·.·

A > B is

- 4221 code is a self complementing code.
 - 4 + 2 + 2 + 1 = 9
- For a self complementing code system, codeword of "5" = 1's complement of codeword of "4"
 - 5 = 9 4 i.e, 9's complement of 4.
- so, codeword of 5 = 1's complement of (1000)

12. (d)

	A	4	E	}	
		↓		\Downarrow	
	<i>A</i> ₁	A_0	<i>B</i> ₁	B_0	
possible when either of t	he foll	owing c	onditions	is satis	sfied
$A \setminus B \rightarrow i A$ when G	- 1				

- 1. When $A_1 > B_1 \Rightarrow \text{i.e.}$, when $G_1 = 1$
- 2. When $(A_1 = B_1)$ and $(A_0 > B_0) \Rightarrow i.e.$, when $E_1G_0 = 1$
- So, the Boolean expression for G is

 $G = E_1 G_0 + G_1$

13. (a)

Χ	Y	Ζ	Α
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

∖ YZ	, I ₀	I_1	I_2	I_3
x	00	01	10	11
0	0	1	0	1
1	0	1	1	0
	0	1	x	x

Thus solution is option (a).

14. (b)

 $T_{\rm min}$ = minimum clock period required

= time delay from the time of active clock edge to the point of time, where the latest change appears at the input of flip-flops before the application of next active clock edge.

Let us assume active clock edge is applied at t = 0, then

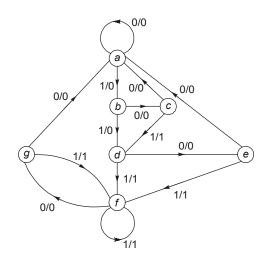
then,

the latest change in Q_0 appears at $\Rightarrow t = 5 \ \mu s$ the latest change in Q_1 appears at $\Rightarrow t = 4 \ \mu s$ the latest change in Q_2 appears at $\Rightarrow t = 3 \ \mu s$ the latest change in D_2 appears at $\Rightarrow t = 4 \ \mu s$ the latest change in D_1 appears at $\Rightarrow t = 4 \ \mu s$


```
the latest change in D_0 appears at \Rightarrow t = 10 \,\mu s
so T_{min} = 10 \,\mu sec
```

$$f_{c \max} = \frac{1}{T_{\min}} = \frac{1}{10 \,\mu \text{sec}} = 100 \,\text{kHz}$$

15. (a)



the state table for given state diagram:

Present	Next		Out	
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$
а	а	b	0	0
b	с	d	0	0
с	а	d	0	1
d	е	f	0	1
е	а	f	0	1
f	g	f	0	1
g	а	f	0	1

state-g and state-e are equal, so we can replace state-g with state-e so, simplified state table will be,

Present	Next	state	Output		
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$	
а	а	b	0	0	
b	с	d	0	0	
с	а	d	0	1	
d	е	f	0	1	
е	а	f	0	1	
f	е	f	0	1	

now, state-f and state-d are equal. So, we can replace state-f with state-d so, simplified state table will be,

Present	Next	state	Output		
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$	
а	а	b	0	0	
b	с	d	0	0	
С	а	d	0	1	
d	е	d	0	1	
е	а	d	0	1	

now, state-*e* and state-*c* are equal. So, we can replace state-*e* with state-*c* so, simplified state table will be,

Present	Next	state	Output		
state	for $X = 0$	for $X = 1$	for $X = 0$	for $X = 1$	
а	а	b	0	0	
b	с	d	0	0	
с	а	d	0	1	
d	с	d	0	1	

• it is not possible to reduce the state table further, as there are no more equal states.

• so, minimum number of states required to design the circuit = 4. and minimum number of flip-flops required = 2.

16. (b)

Α	В	f
0	0	P_1
0	1	P_2
1	0	P_3
1	1	P_4

so, the given pass logic network acts as EX-OR gate when $P_1 = P_4 = 0$ and $P_2 = P_3 = 1$.

17. (c)

The output z is connected from inverted outputs of the FFs through AND gate, i.e.

$$z = \bar{Q}_A \bar{Q}_B \bar{Q}_C = \overline{Q_A + Q_B + Q_C}$$

Hence, the output z will be high only when all FF's output are zero, i.e. $Q_A = Q_B = Q_C = 0$ Let initially z = 1, then we obtain the truth table for the circuit as

	Pre	esent	State			Inputs	5			Nex	kt Sta	te	
CLK number	Q _A	Q _B	Q _c	J_A	K _A	J _B	K _B	J _C	ĸ _c	Q_A^+	Q_B^+	Q_C^+	z
initial	0	0	0	-	-	-	-	-	-	-	-	-	1
1	0	0	0	1	1	1	1	0	1	1	1	0	0
2	1	1	0	1	1	1	1	1	1	0	0	1	0
3	0	0	1	1	1	0	1	0	1	1	0	0	0
4	1	0	0	1	1	1	1	0	1	0	1	0	0
5	0	1	0	1	1	1	1	1	1	1	0	1	0
6	1	0	1	1	1	0	1	0	1	0	0	0	1

It is MOD-6 counter. So, output z will be 1 after 6 clock pulses.

18. (b)

When $Q_4 Q_3$ is 11, then CLR = 0, hence the count goes back to 00000.

Thus, counter counts 0 - 23, and clears at 24. It's a MOD-24 counter.

19. (c)

$$f_{\max} = \frac{1}{nt_{pd}}$$

 $t_{\rm pd}$ = propagation delay of each flip-flop and n = number of flip flops

$$t_{pd} = \frac{1}{n \times 25 \times 10^6} \sec$$

= $\frac{1000}{4 \times 25} \times 10^{-9} \sec = 10 \operatorname{nsec}$

20. (d)

Clk No.	Q_1	Q_2	
0	0	0	→initial
1	1	0	
2	1	1	
3	0	1	
4	0	0	

It's a Johnson counter after 4 clock pulses the state (Q_1Q_0) will be (00) again.

21. (b)

$$V_{0} = -R V_{\text{ref}} \left[\frac{b_{3}}{2R} + \frac{b_{2}}{4R} + \frac{b_{1}}{8R} + \frac{b_{0}}{16R} \right]$$

= $-\frac{V_{\text{ref}}}{16} \left[8b_{3} + 4b_{2} + 2b_{1} + b_{0} \right]$
 $V_{0} = -\frac{V_{\text{ref}}}{16} \left[\text{decimal equivalent of input binary code} \right]$
given input binary code = $(0110)_{2} = (6)_{10}$
 $V_{0} = \frac{10}{16}(6) = 3.75 \text{ V}$

22. (c)

SO,

23. (c)

Output of the 4 : 1 MUX circuit in Figure A is

$$Y = I_0 \overline{A} \overline{B} + I_1 \overline{A} B + I_2 A \overline{B} + I_3 A B$$

Output of the circuit in Figure B is

 $Y = A \oplus B \oplus C = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC$

On comparison

$$I_0 = C$$

$$I_1 = \overline{C}$$

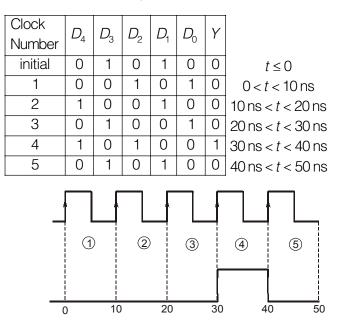
$$I_2 = \overline{C}$$

$$I_3 = C$$

24. (c)

 $Y = (A \oplus B) \cdot A = (\overline{A}B + A\overline{B}) \cdot A$

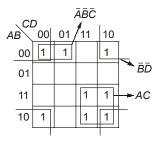
 $= A\overline{B} = D_2 \cdot \overline{D}_0$



The LED will be in ON state for 30 ns < t < 40 ns. So, option (c) is the correct answer.

25. (b)

The k-map has to rearranged as



26. (c)

$$F = \overline{A}\overline{B}\overline{C} + \overline{B}\overline{D} + AC$$

$$F = \overline{(A+B)C+D}$$

27. (a)

In the circuit, we have

$$D_0 = \overline{Q_1 Q_2} = \overline{Q}_1 + \overline{Q}_2$$
$$D_1 = Q_0$$
$$D_2 = Q_1$$

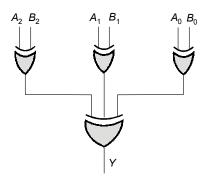
The truth table for the circuit is obtained below.

	Present State				Inputs			Next State		
CLK number	Q ₂	Q ₁	Q ₀	D ₂	<i>D</i> ₁	<i>D</i> ₀	Q_2^+	Q_1^+	Q_0^+	
initial	0	0	0	-	-	-	-	-	-	
1	0	0	0	0	0	1	0	0	1	
2	0	0	1	0	1	1	0	1	1	
3	0	1	1	1	1	1	1	1	1	
4	1	1	1	1	1	0	1	1	0	

After 4 clock pulses, output is $Q_2 Q_1 Q_0 = 110$

28. (c)

Redrawing the digital circuit



From the figure we get,

$$Y = A_0 \oplus B_0 \oplus A_1 \oplus B_1 \oplus A_2 \oplus B_2$$

So, Y is XOR of six boolean variables and Y will be 1 when odd number of variable are 1. Thus there will

be
$$\frac{2^6}{2} = 32$$
 cases for the output to be 1.

Q ₀	Q ₁	J_0	K ₀	J ₁	<i>K</i> ₁	Q _0^+	Q_1^+	
0	0	1	1	0	1	1	0	5
1	0	1	1	1	0	0	1	> MOD = 3
0	1	0	1	0	1	0	0)
0	0	1	1	0	1	1	0	
1	0	1	1	1	0	0	1	
0	1	0	1	0	1	0	0	

30. (b)

Since its an inverting amplifier,

MADE EASY

 $V_{\rm out} = -9.375 \, {\rm V} \qquad {\rm when} \ |V_{\rm out}| = 9.375 \, {\rm V}$ maximum output means all bits are 1

 $b_0 b_1 b_2 \dots b_n = 1111 \dots 1$ i.e.,

$$V_{\text{out}} = -V\left(\frac{R}{R}b_0 + \frac{R}{2R}b_1 + \frac{R}{4R}b_2 + \frac{R}{8R}b_3 \dots + \frac{R}{2^{n-1}R}b^n\right)$$

-9.375 = $-5\left(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}}\right)$
 $1.875 = \frac{\left(1 - \left(\frac{1}{2}\right)^n\right)}{1 - \frac{1}{2}}$
 $\frac{1}{2} \times 1.875 = 1 - \left(\frac{1}{2}\right)^n$
 $\left(\frac{1}{2}\right)^n = 1 - \frac{1}{2} \times 1.875 = 0.0625 = \frac{1}{16}$
 $2^n = 16$
 $n = 4$

SO,