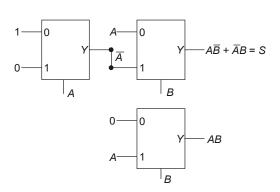
B RANK IMPROVEMENT BATCH ELECTRICAL ENGINEERING

RIB-W | T1

R

Session 2019 - 20 | S.No. : 220619_LS1


ANSWER KEY		>	Dig	jital E	lectronics					
1.	(c)		7.	(a)	13.	(c)	19.	(b)	25.	(a)
2.	(c)		8.	(d)	14.	(c)	20.	(c)	26.	(b)
3.	(c)		9.	(c)	15.	(d)	21.	(d)	27.	(d)
4.	(b)		10.	(c)	16.	(a)	22.	(c)	28.	(c)
5.	(b)		11.	(c)	17.	(a)	23.	(b)	29.	(a)
6.	(b)		12.	(b)	18.	(c)	24.	(a)	30.	(d)

DETAILED EXPLANATIONS

1. (c)

 $(AB + B\overline{C} + \overline{A}C) (A + C) = AB + AB\overline{C} + ABC + \overline{A}C$ $= AB + \overline{A}C$

2. (c)

MADE EASY India's Best Institute for IES, GATE & PSUB

3. (c)

number of flip-flops required = 4maximum delay = 4×10 nsec = 40 nsec

4. (b)

Total number of states possible with 11 flip-flops = $2^{11} = 2048$ Required states = 2014 Number of states to be eliminated

= 2048 - 2014 = 34

5. (b)

When MOD 5 and MOD 4 counters are cascaded, the combination becomes MOD 20 counter.

So, output frequency, $f_0 = \frac{f_i}{20} = \frac{20}{20} = 1 \text{ MHz}$

6. (b)

In 2's complement data representation, range with n-bit is: $-(2^{n-1})$ to $+(2^{n-1}-1)$. So, 8-bit 2's complement can represent numbers between -128 to +127.

7. (a)

In the given digital circuit each multiplexer is working as a NOT gate thus it is a ring oscillator with five

NOT gates. The frequency of oscillation will be $f = \frac{1}{2Nt_{pd}}$.

N = number of NOT gates in cascade

 t_{pd} = propagation delay of each NOT gate.

$$\therefore \qquad f = \frac{1}{2 \times 5 \times 25 ns} = 4 \times 10^6 \text{ Hz} = 4 \text{ MHz}.$$

8. (d)

From the figure $J = \overline{Q}, K = 1$.

Clock	J	K	Q	Q^{\dagger}
-	1	1	0	Ι
1	1	1	0	_1
2	0	1	1*	0
3	1	1	0	1
4	0	1	1	0
5	1	1	0	1

Hence, sequence of *Q* is 010101.

9. (c)

Divide by 78 counter can be realized by using cascade of MOD-13 and MOD-6 counter.

10. (c)

$$Q^{+} = \overline{X}\overline{Y} + X\overline{Y}Q + \overline{X}Y\overline{Q} = \overline{Y}[\overline{X} + XQ] + \overline{X}Y\overline{Q}$$
$$= \overline{Y}\overline{X} + \overline{Y}Q + \overline{X}Y\overline{Q} = \overline{Y}Q + \overline{X}[\overline{Y} + Y\overline{Q}] = \overline{Y}Q + \overline{X}\overline{Y} + \overline{X}\overline{Q}$$
$$Q^{+} = \overline{Y}Q + \overline{X}\overline{Q}$$
[using Consensus Law]

11. (c)

1	1	1	
G	А	Т	Е
+	Е	Е	Е
Т	7	Е	Α

13. (c)

$$S_{1} = A \oplus B$$

$$C_{1} = AB$$

$$S = (A \oplus B) \oplus AB = (A \oplus B) \cdot \overline{AB} + (\overline{A \oplus B}) \cdot AB$$

$$= (A\overline{B} + \overline{AB}) (\overline{A} + \overline{B}) + (AB + \overline{AB}) (A, B) = A\overline{B} + \overline{AB}) + AB = A + B$$

$$C = (A \oplus B) \cdot AB = (A\overline{B} + \overline{AB}) \cdot AB = 0$$

14. (c)

Q_3	Q_2	Q_1						
0	0	0	\leftarrow	Initial state				
0	0	1		1 st clock pulse				
0	1	1		2 nd clock pulse				
1	0	1		3 rd clock pulse				
0	0	0		4 th clock pulse				
	e				~	~	~	

 \Rightarrow Modulus of the counter is 4, After 8 clock pulses $Q_3 Q_2 Q_1$ will be 101

15. (d)

From the figure we can see that

- 1st change at 1 ns is accepted, so 6th bit i.e. *MSB* is 1
- 2^{nd} change at t = 2 ns is not accepted, so 5^{th} bit is 0.
- 3^{rd} change at t = 3 ns is not accepted, so 4^{th} bit is 0.
- 4^{th} change at t = 4 ns is accepted, so 3^{rd} bit is 1.
- 5^{th} change at t = 5 ns is not accepted, so 2^{nd} bit is 0.
- 6^{th} change at t = 6 ns is accepted, so 1^{st} bit is 1.

So, digital output is $(100101)_2$.

16. (a)

The following table represent the output of the multiplexer.

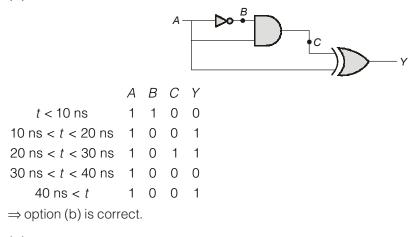
Clock	Cou	utput	MUX Input			Output	
CIOCK	A ₂	A ₁	A ₀	S ₁	S_0	Enable	Output
_	1	0	1	0	1	1	I ₁
1	1	0	0	0	1	0	0
2	0	1	1	1	0	1	I_2
3	0	1	0	1	0	0	0

17. (a)

Since, % accuracy is 0.02 thus the maximum error will be

= maximum output
$$\times \frac{(0.02)}{100} = 5 \times \frac{(0.02)}{100} = 1 \text{ mV}$$

www.madeeasy.in


18. (c)

The input D is $Q_0 \oplus Q_2 \oplus Q_3$.

Clock	D	Q ₃	Q ₂	Q ₁	Q ₀
_	_	1	0	0	0
1	1	1	1	0	0
2	0	0	1	1.	0
3	1	1	0	1	1
4	0	0	1	0	1
5	0	0	0	1	0
6	0	0	0	0	1

Hence, the pattern 0001 appears at 6th pulse.

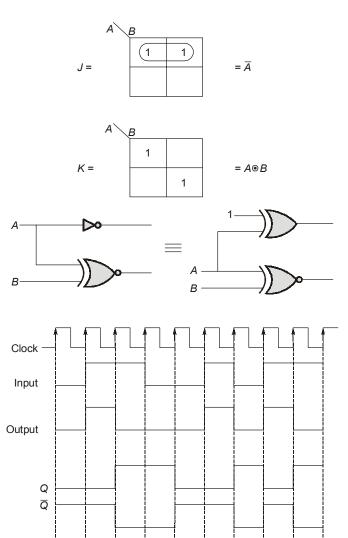
19. (b)

$$Y = \overline{ABC + \overline{A}\overline{B}} + BC$$

Dual of Y

$$Y_{d} = \overline{(A+B+C) \cdot (\overline{A}+\overline{B})} \cdot (B+C)$$
$$= \left[\overline{(A+B+C)} + \overline{(\overline{A}+\overline{B})}\right] \cdot (B+C)$$

Compliment of Y


$$Y_{c} = \overline{(\overline{ABC} + \overline{\overline{AB}}) + BC} = (\overline{\overline{ABC} + \overline{\overline{AB}}}) \cdot \overline{BC} = (ABC + \overline{\overline{AB}}) \cdot \overline{BC}$$

21. (d)

State Table

A	В	Q_{n+1}	J	Κ
0	0	\overline{Q}_n	1	1
0	1	1	1	0
1	0	Q_n	0	0
1	1	0	0	1

By checking all the options option (c) correctly matches.

23. (b)

 $\begin{array}{lllllllllll} & Q_0 &= & Q_1 = 0 \\ \Rightarrow & Y_0 &= & 0 \\ \Rightarrow & J - & K \mbox{ flip-flop is cleared} \\ Q_A &= & 0 & \bar{Q}_A &= & 1 \\ As \mbox{ clock pulse is applied counter starts up counting} \\ As \mbox{ counter reaches } & Q_1 &= & 1, \ Q_0 &= & 1 \mbox{ after 3 clock pulses } J - & K \mbox{ flip flop is preset.} \\ \Rightarrow & Q_A &= & 1 & \bar{Q}_A &= & 0 \end{array}$

 \Rightarrow Counter starts down counting until Y_0 is low and this repeats.

So, Output $Q_1 Q_0$ in decimal form is

0, 1, 2, 3, 2, 1, 0, 1....

24. (a)

$$\overline{\text{Chip select}} = \overline{(A_2 \odot A_3) \cdot [(A_4 \odot A_5) + (A_6 \odot A_7)]}$$

Chip select = $(A_2 \odot A_3) \cdot [(A_4 \odot A_5) + (A_6 \odot A_7)]$

Chip select will be '1' when

 $[(A_2 = A_3) \text{ and } (A_4 \neq A_5) \text{ and } (A_6 \neq A_7)]$

Since A_1 , A_0 are not present in expression of chip select they can have any value. So the address combination for chip select = 1 are

	A ₇	A_6	A_5	A_4	A_3	A_2	<i>A</i> ₁	A_0
1	0	1	1	0	0	0	×	×
2	1	0	1	0	0	0	×	×
3	1	0	0	1	0	0	×	×
4	0	1	0	1	0	0	×	×
5	0	1	1	0	1	1	×	×
6	1	0	1	0	1	1	×	×
7	1	0	0	1	1	1	×	×
8	0	1	0	0	1	1	×	×

We get 8 combinations only 1st combination match with option a

25. (a)

In the circuit, we have

$$D_0 = \overline{Q_1 \cdot Q_2} = \overline{Q}_1 + \overline{Q}_2$$
$$D_1 = Q_0$$
$$D_2 = Q_1$$

The truth table for the circuit is obtained below.

		Input		Output		
CLK	D ₂	D_1	D_0	Q ₂	Q ₁	Q_0
0	0	0	1	0	0	0
1	0	1	1	0	0	1
2	1	1	1	0	1	1
3	1	1	0	1	1	1
4	1	0	0	1	1	0
5	0	0	0	1	0	0

The D-flip flop transfer the data from input to output, if CLK pulse is given. After 4 clock pulses, output is $Q_2 Q_1 Q_0 = 110$

26. (b)

Since clock is applied to \div 12 counter. The AND gates have open collector output so RST will be '1' if both the AND gates produce '1'. Thus RST will be 1 when output of top counter is '0110' and output of bottom counter is '1001'. From the circuit we can determine that after every twelve pulses of clock, one pulse of CLK reach to the top counter. So,

Clock	Output of bottom counter	Output of top counter	Ζ
0	0000	0000	0
11 12	1011 0000	0000 0001	0 0
23 24	1011 0000	0001 0010	0 0
35 36	1011 0000	0010 0011	0 0
47 48	1011 0000	1011 0100	0 1
59 60	1011 0000	0100 0101	1 1
71 72	1011 0000	0101 0110	1 1
81 82	1001 0000	0110 0000	0 0

So Z remain 1 for (12 + 12 + 9) clock cycles

So duty cycle =
$$\frac{12+12+8}{12+12+12+12+12+12+8} \times 100 = 39.5\%$$

27. (d)

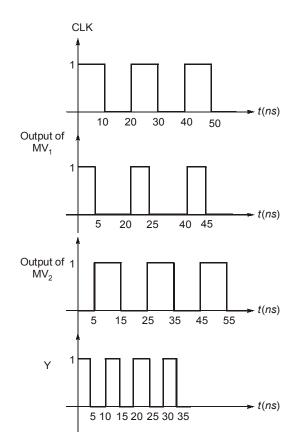
$$S_{1} = SUM = A \oplus B \text{ and } S_{0} = CARRY = A. B$$

$$Y = S'_{1}S'_{0}I_{0} + S'_{1}S_{0}I_{1} + S_{1}S'_{0}I_{2} + S_{1}S_{0}I_{3}$$

$$= (A \oplus B)'(AB)'C + (A \oplus B)'(AB)C + (A \oplus B)(AB)'C' + (A \oplus B)(AB)C'$$

$$Y = A \oplus B \oplus C$$

28. (c)


Given circuit is of 8 to 1 multiplexer. Multiplexer is used to select any one input out of all inputs at a time. Hence, output will be equal to I_5 for a particular combination of selection lines.

For D = 1; C = 0; A = 1combination selects the I_5 . Also, we have the given logic function as F = AC + ABD + ACD + BCDSo, by substituting D = 1, C = 0, and A = 1,We get F = 0 + B + 0 + 0 F = B

Thus, input to I_5 must be equal to B.

29. (a)

Since $Y = (\text{output of } MV_2) \oplus CLK$ So the time period of Y is 100 MHz

30. (d)

A = 10 10 10 10 B = 11 11 11 11 Ex-NOR : 10 10 10 10

Gray code of 10 10 10 10 is 11 11 11 11 Decimal equivalent of (11111111) = 255

####