
Sl. : 01SK_CS_ABCD_070722

1. (a)

2. (d)

3. (b)

4. (d)

5. (a)

6. (d)

PROGRAMMING & DATA STRUCTURES

ANSWER KEY

COMPUTER SCIENCE & IT

Date of Test : 07/07/2022

CLASS TEST

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

7. (b)

8. (c)

9. (a)

10. (a)

11. (d)

12. (a)

13. (b)

14. (a)

15. (d)

16. (b)

17. (d)

18. (c)

19. (b)

20. (a)

21. (b)

22. (a)

23. (d)

24. (a)

25. (d)

26. (d)

27. (c)

28. (c)

29. (c)

30. (d)

© Copyright :www.madeeasy.in

12 Computer Science & IT

DE TAILED EXPL ANATIONS

1 .1 .1 .1 .1 . (a)(a)(a)(a)(a)
In case of full or complete binary tree,

Minimum height (hmin) = log2 (n + 1)

Hence, last element will be stored at min2 1h −

Minimum size = 2log (1)2 1n+   − .

2 .2 .2 .2 .2 . (d)(d)(d)(d)(d)

(a) 6, 8, 4, 7, 5

6
4
8
7
5

After popping element 6, only 4 can be popped, hence this permutation is not possible.

(b) 6, 4, 5, 7, 8

6
4
8
7
5

After performing pop operation on element 6, 4 now only element 8 can be popped.

(c) 6, 4, 7, 8, 5

6
4
8
7
5

After 6, 4 elements are popped, now element 7 can only be popped iff 8 has already been popped.

(d) 7, 8, 4, 6, 5

5
7

pop (7)

5
8

pop (8)

5
4

pop (4)

5
6

pop (6)

5

pop (5)

3 .3 .3 .3 .3 . (b)(b)(b)(b)(b)
Here m represent the number of rows and n represents the number of column.

m = 2, n = 3
∗ (A[0] + 0) = A[0][0] = 1
∗ (A[1] + 0) = A[1][0] = 4

Similarly it will access all the element.

∴ 1 4 2 5 3 6 is the output printed by the program.

4 .4 .4 .4 .4 . (d)(d)(d)(d)(d)
• Void pointers can’t be used for dereferencing because each variable type takes different amount of

memory.
• Since compiler can not know, after how many bytes is the next variables located, hence arithmetic

operations can’t be performed.
• Default value of extern storage class is 0.

© Copyright : www.madeeasy.in

13• Programming and Data StructuresCT-2022 CS

5 .5 .5 .5 .5 . (a)(a)(a)(a)(a)
Number of children by every node = n
depth of tree = k
Let Let Let Let Let nnnnn = 3 = 3 = 3 = 3 = 3

depth = 1, 3 = 31

depth = 2, 3 = 92

depth = , 3K K

Hence the maximum number of leaves that ‘T’ an have in nk.

6 .6 .6 .6 .6 . (d)(d)(d)(d)(d)
Let n = 3

r =

1 2 3
1 1 3 8
2 3 2 5
3 8 5 3

− − 
 − − 
 − − 

1 + 2 + 3 + 2 × (– 3 – 8 – 5) = – 26 ≠ +(1)
2

n n

7 .7 .7 .7 .7 . (b)(b)(b)(b)(b)
The tree constructed will be,

4

2 7

1 63 8

5

• ‘T’ has 4 leaf nodes.
• Subtree rooted at node ‘7’ satisfies the AVL property.

7

6 8

5

BF = 1

BF = 0

BF = 0

BF = 1
Θ BF =Balancing Factor

• In a heap, nodes are started from by most pointer, hence node ‘5’ is violating the basic heap property.

© Copyright :www.madeeasy.in

14 Computer Science & IT

8 .8 .8 .8 .8 . (c)(c)(c)(c)(c)

Head

P
42

3
1

New

1. new → next = P → next;
2. P → next = new;
3. new → prev = P;
4. (new → next) → prev = new;

9 .9 .9 .9 .9 . (a)(a)(a)(a)(a)

Consider a stack 4
3
2
1

The characteristic of the stack is both insertions and deletions are performed from one end.
If, it is implemented with a link lists, then both insertions and deletions are needed to be performed from
the end.
Since, the linked list is a doubly circular linked list, hence the start node will have address of last node.

Start 400 100 200 300200 300 400 100
100 200 300 400

So, both the operations can be performed in Ο(1) time.

10.10.10.10.10. (a)(a)(a)(a)(a)
Initial value are p = –3

q = 2
r = 0

&& has more priority than ++
++ p = –2
++ q = 3

Since, both are non zero, hence expression becomes true. r++ need not be checked for calculating ‘s’
because it’s an OR operation so s = 1 i.e. the truth value of the expression.

t = p + q + s++
= – 2 + 3 + 1
= 2

11.11.11.11.11. (d)(d)(d)(d)(d)
In this problem we have an array of char pointers pointing to start of 4 strings i.e.,

s s + 0 s + 1 s + 2 s + 3

m a d e e a s y o n l i n e t e s t s e r i e s

© Copyright : www.madeeasy.in

15• Programming and Data StructuresCT-2022 CS

We have ptr which is pointer to a pointer of type char and a variable p which is a pointer to a pointer of type
char.

ss + 1s + 2s + 3ptr

ptr + 0 ptr + 1 ptr + 2 ptr + 3

p = ptr; ptrp

++p; ptr+1p

Printf(“%s”, ∗ – – ∗ ++ p + 3);
In printf statement the expression is evaluated ∗++p cause gets value (s+1) then now pre-decrement is
executed and we get (s+1) – 1 = s. The indirection pointer now gets the value from the array of s and add
3 to the starting address. The string is printed starting from this position. Thus, the output is ‘eeasy’.

12.12.12.12.12. (a)(a)(a)(a)(a)
Let’s traverse the code on the given tree.

F

D

G

B

A

C

E H I

Let ‘p’ be D and ‘q’ be E.

Find (A, D, E) Output B⇒⇒

λ = B λ = Find (B, D, E) r = Find (C, D, E) r = NULL

λ = Find (D, D, E) r = Find (E, D, E) λ = Find (H, D, E) r = Find (I, D, E)

λ = Find (NULL, D, E) r = Find (NULL, D, E) λ = Find (NULL, D, E) r = Find (NULL, D, E)

λ = r = NULL λ = r = NULL

λ =
 r

=
NU

LL

λ = r = N
U

LL

λ = D λ = E λ = NULL r = NULL

Consider nodes ‘D’ and ‘E’, they have two ancestors node ‘A’ and node ‘B’. ‘B’ is the lowest common
ancestor and that is the output.
Hence, the value returned by the function is lowest common ancestor of two nodes.

13.13.13.13.13. (b)(b)(b)(b)(b)

2
4

h+1–1 1
5 (2 –1)h+1

Total = ()
1

12 1 1
2 1 1

4 5

h
h

+
+ − + − +  

© Copyright :www.madeeasy.in

16 Computer Science & IT

= ()19
2 1 1

20
h+ − +

14.14.14.14.14. (a)(a)(a)(a)(a)
Take m = 4 and n = 2

func (4, 2)

func (3, 2) func (3, 1)

func (2, 2) func (2, 1) func (2, 1) func (2, 0)

func (1, 1) func (1, 0) func (1, 1) func (1, 0)1

1 1 1 1

1 122

3 3

6

So, correct vaue of E is func (m – n, n) + func (m – 1, n – 1).

15.15.15.15.15. (d)(d)(d)(d)(d)
• print 1():print 1():print 1():print 1():print 1(): x = 10 + 5 = 15; since the variable is of static storage class, hence it will retain its value

between different function calls.
• print 1():print 1():print 1():print 1():print 1(): x = 15 + 5 = 20; since it has retained its value 15.
• print 2():print 2():print 2():print 2():print 2(): x is defined again inside the function and hence will print, x = x + 5 = 10 + 5 = 15. Again

when the function will be called, x = 10 + 5 = 15. Here second time also x = 10 will be there because
it is not initialized at the time of definition.

Hence output 15, 20, 15, 15.

16.16.16.16.16. (b)(b)(b)(b)(b)
By comparing string1 and string2, we are not comparing the actual data of the string, instead the starting
address of both strings will be compared.
Hence, it will print “Two strings are unequal”.
To compare the actual data of the strings,

if (∗ string1 == ∗ string2)
then will get the output: “Two strings are equal”.

17.17.17.17.17. (d)(d)(d)(d)(d)

Successor of Root element is always the smallest element of the Right subtree. Because it will be the next
largest element after the element to be deleted.

Root

Inorder sucessor
(Left node)

Root

Inorder successor
(Node with empty left child)

© Copyright : www.madeeasy.in

17• Programming and Data StructuresCT-2022 CS

18.18.18.18.18. (c)(c)(c)(c)(c)

head

head

temp

/°

/°

/°

/°

1

1

1

1

2

2

3

3

3

3

4

4

4

5

5

5

5

head

head

temp

The above program deletes every even number node in the linked list (In particular second, fourth, sixth...
soon nodes will be deleted)

19.19.19.19.19. (b)(b)(b)(b)(b)

M A D E E A S Y T E S T /°

2000

0 1 2 3 4 5 6 7 8 9 10 11 12

X

Y

X = 2000
Y = 2000

y[7] = y (90 in ASCII)
y[10] = s (83 in ASCII)

= X + Y[7] – y[10]
= 2000 + 90 – 83 = 2007

Therefore it prints from the array starting at address; 2007 to the end i.e., “MADEEASYTEST”.

20.20.20.20.20. (a)(a)(a)(a)(a)
If S2 stack is empty and S1 stack is not empty then we have to pop the element from stack S1 and push
that element into stack S2 and return the stack S2 which contain newly inserted element.

21.21.21.21.21. (b)(b)(b)(b)(b)

50
1000

p
20

2000

q
52
54

11111ststststst function call pass parameters as call by reference

1000
3000

∗a
2000
4000

∗b
2000

a = b ⇒ Now a is also pointing to 2000 address.
∗a+ = 2 ⇒ ∗a = ∗a + 2

⇒ ∗a = 20 + 2 = 22
a = b ⇒ Now a is also pointing to 2000 address.
22222ndndndndnd function call by reference

© Copyright :www.madeeasy.in

18 Computer Science & IT

1000
1000

∗a
1000
6000

∗b

a = b ‘a’ will now store b value which is 1000, already contain by ‘a’.
• ∗a+ = 2;

*a = ∗a + 2;
∗a = 50 + 2
∗a = 52

• a = b
‘a’ will now store b value which is 1000, already contain by ‘a’.

2000
3000

∗a
2000
4000

∗b
2000

a = b ⇒ Now a is also pointing to 2000 address.
∗a+ = 2 ⇒ ∗a = ∗a + 2

⇒ ∗a = 22 + 2 = 24
a = b ⇒ Now a is also pointing to 2000 address.

So, output will be 52 and 24.

22.22.22.22.22. (a)(a)(a)(a)(a)
Consider 2 nodes “A”, “B”
Consider preorder = A . B

A A

B B

only 2 Tree possible

So,
×
4!

3! 2!
=

4
2

 = 2

Consider 3 nodes A. B. C
Consider preorder = A, B, C

A A AA A

B B BB BC

C CC C

Only 5 trees present

So,
×
6!

4! 3!
=

×
×

6 5
3 2

 = 5

So option (c) is true.

23.23.23.23.23. (d)(d)(d)(d)(d)

101000 S

10001000

20

1001

30

1002

40

1003

50

1004

60

1005

str 1006 = (int ∗) (&S + 1)

⇒ = (int ∗) (Base address of (S) + 1 ∗ (size of (S))

© Copyright : www.madeeasy.in

19• Programming and Data StructuresCT-2022 CS

⇒ = (1000 + 6 B)
⇒ = (1000 + 6)
⇒ = 1006
Now, ∗(S + 2) print 3rd element from start.

∗(Str – 2) print ∗(1006 –2) = ∗(1004) element at address 1004 i.e. 50.

24.24.24.24.24. (a)(a)(a)(a)(a)

GATE% CAT% IES% IAS% PSU% IFS%

1000 1004 1008 1012 1016 1020

arr[] =

**ptr = arr ⇒ **ptr = 1000;
*ptr1 = (ptr+ = size of (int)) [–2];

= (1000 + 4) [–2]
= [1000 + 4 × 4] [–2]
= [1016] [–2]
= [1015 – 2 × 4]

*ptr1 = [1008]
print(*ptr1) = IES

25.25.25.25.25. (d)(d)(d)(d)(d)
Enqueue:Enqueue:Enqueue:Enqueue:Enqueue: PUSH ⇒ 1 operation
Dequeue:Dequeue:Dequeue:Dequeue:Dequeue: REVERSE, POP, REVERSE ⇒ 3 operation
Example:Example:Example:Example:Example: Enqueue (10), Enqueue (20), Enqueue (30)

Dequeue, Dequeue, Enqueue (40)

10 20 30 40Queue:

10
Push

Enqueue
⇓

20
10

Push

Enqueue
⇓

30
20
10

Push

Enqueue
⇓

10
20
30

REV

20
30

Pop

30
20

REV

Dequeue

20
30

REV
30

Pop
30

REV

Dequeue

40
30

Push

Enqueue
⇓

Enqueue:Enqueue:Enqueue:Enqueue:Enqueue: REV, PUSH, REV
Dequeue:Dequeue:Dequeue:Dequeue:Dequeue: POP
Example:Example:Example:Example:Example: Enqueue (10), Enqueue (20), Enqueue (30)

Dequeue, Dequeue, Enqueue (40)

10 20 30 40Queue:

10
REV

20
10

Push

10
20

REV

Enqueue

20
30

REV

30
20
10

Push

10
20
30

REV

Enqueue

20
30

Pop

Dequeue
⇓

REV
10

Push
10

REV

Enqueue

30
Pop

Dequeue
⇓

30
REV

40
30

Push

30
40

REV

Enqueue

So, either 1 Enqueue and 3 Dequeue or 3 Enqueue and 1 dequeue operation possible.

© Copyright :www.madeeasy.in

20 Computer Science & IT

26.26.26.26.26. (d)(d)(d)(d)(d)
• Rotation operation in always preserves the inorder numbering so 1st is true.
• AVL tree doesnot guarantee that both left and right subtree has equal number of nodes, so statement

is false.
• Consider

satisfying the property of statement 3, in this tree if element present is at last level the time complexity
will be c × n/2 � Ο(n). So S3 is false.

• Total nodes = 3 × internal nodes + 1
= 3 × 20 + 1 = 61

and 20 + 41 = 61
(Leaf + internal = total) so S4 is true.

27.27.27.27.27. (c)(c)(c)(c)(c)
Given function call is recursive.
Before calling any recursive call, it decrements length. So at leaf node recursive call will decrement by 1
even there exist no path.
∴ B is (len == –1)
Before traversing its child it decrements the length, whenever a length reaches to –1 and node is leaf then
it implies there exist a path with given length.
∴ A is path(x → left, len – 1)||path(x → right, len – 1)
If one of the path returns non-zero then it recursively returns back.
So option (c) is correct.

28.28.28.28.28. (c)(c)(c)(c)(c)
• Inorder of tree is: Left, Root, Right (any other)

A

K

B C

J E

H

G

D

F

I

L

6

2

1 4

3 5 8

11 12

7
9

10

So, Inorder: AKBJCLIDEHFG
• Postorder of tree is Left, Right (any other), Root

So, Post order is: ABCJKIDEFGHL

© Copyright : www.madeeasy.in

21• Programming and Data StructuresCT-2022 CS

29.29.29.29.29. (c)(c)(c)(c)(c)
All the 3 functions check if a given number is a power of 2.
Function Function Function Function Function 11111::::: Checks if log2(n) of a number is an integer. If yes, it returns true, else it returns false. So
function 1 checks if a given number is a power of 2.
Function Function Function Function Function 22222::::: The key here is that, a number which is a power of 2 has the bit pattern 10* (1 followed by any
number of zeroes). So at every step we keep checking if the number is even and keep dividing the
number by 2 (right shift); if except for the most significant bit, a bit is found to be 1 (the number is odd at
any point of time while right shifting), then the function 2 returns false. Else it returns true. So function 2
also checks if a given number is a power of 2.
Function Function Function Function Function 33333::::: The observation is that, if a number n is power of 2, then (n – 1) becomes the 1’s complement
of n. Hence function 3 also checks if a given number is a power of 2.

30.30.30.30.30. (d)(d)(d)(d)(d)
Since P1 returns the address of a variable which is declared locally, P1 may cause problems.
P2 will cause a problem because px doesn’t have any address and is being dereferenced.
P3 also will cause problems because even though malloc has been used to allocate the memory into the
heap, free() has been called and returning that address is simply asking for trouble.

