CLASS TEST					No. : 01	JP_CE_25	0622		
ESS MADE EASS India's Best Institute for IES, GATE & PSUs									
	Delhi Bhopal			•	•	•	•	•	na
	Web:	www.m	adeeasy.in	E-mail: i	into@madee	easy.in P	n: 011-451	24612	
	FNG	IN	FFR		З М	FCH	ΙΔΝ		
	ENGINEERING MECHANICS								
			CIVIL	EN	GINE	ERIN	G		
			Date of	Test	:25/0	6/2022	2		
AN	SWER KEY	>							
1.	(b)	7.	(c)	13.	(d)	19.	(c)	25.	(d)
2.	(b)	8.	(c)	14.	(b)	20.	(a)	26.	(b)
3.	(b)	9.	(d)	15.	(c)	21.	(c)	27.	(c)
1		4.0	(b)	16	(b)	22.	(b)	28.	
4.	(c)	10.	(6)						(a)
4. 5.	(c) (a)		(b)		(d)	23.		29.	

India's Beet Institute for IES, GATE & PSUs

1. (b)

Intensity of irrigation for kharif = 100 - 65 = 35%Intensity of irrigation for rabi = 100 - 50 = 50% \therefore Annual intensity of irrigation = sum of seasonal intensity of irrigation in a year

= 35% + 50% = 85%.

3. (b)

$$D = \frac{8.64B}{\Delta} = \frac{8.64 \times 25}{0.15} = 1440 \text{ ha/m}^3/\text{sec}$$
$$Q = \frac{A}{D} = \frac{2880}{1440} = 2 \text{ m}^3/\text{sec}$$

4. (c)

Sodium adsorption ratio (SAR) =
$$\frac{[Na^+]}{\sqrt{\frac{[Ca^{2+}] + [Mg^{2+}]}{2}}} = \frac{20}{\sqrt{\frac{10+5}{2}}}$$

= 7.30

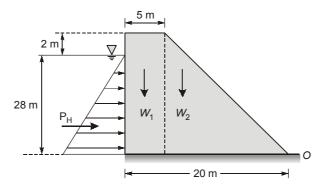
5. (a)

As per Kennedy's Critical velocity, $V_0 = 0.55 \text{ my}^{0.64}$ m = critical velocity ratio = 0.90 y = depth of flow = 1.2 m \therefore $V_0 = 0.55 \times 0.9 \times (1.2)^{0.64} = 0.556 \text{ m/sec}$ Also, discharge through channel, $Q = 4 \text{ m}^3\text{/sec}$ \therefore Required cross-section area of channel

$$A = \frac{Q}{V_0} = \frac{4}{0.556} \simeq 7.20 \text{ m}^2$$

7. (c)

Sinuosity of meander =
$$\frac{\text{Curve length of meander}}{\text{Straight length of meander}}$$


10. (b)

Scour depth =
$$1.35 \left(\frac{q^2}{f}\right)^{1/3} = 1.35 \left(\frac{3^2}{1.2}\right)^{1/3} = 2.64 \,\mathrm{m}$$

11. (b)

Available water Available water Available water Available Water Available Water Available Availab

14. (b)

 $\gamma_c = 24 \text{ kN/m}^3$ (Considering inside length of dam as unity)

Force	Calculation	Magnitude (kN/m)	Lever arm (in m) (about 0)	Moment in (kN-m/m) (about 0)
W_1	$24 \times 30 \times 5$	3600	17.5	63000
W_2	$1/2 \times 24 \times 30 \times 15$	5400	10	54000
P _H	$1/2 \times 9.8 \times (28)^2$	3845.52	9.33	35878.7
: Resisting moment, Dvertuning moment,		$M_R = 63000 + M_O = 35878.7$	ſ	

FOS against overtuning = $\frac{M_R}{R_O} = \frac{117000}{35878.7} = 3.26$ (FOR) against sliding = $\frac{\mu\Sigma V}{\Sigma H} = \frac{0.5 \times (3600 + 5400)}{3845.52} = 1.17$

...

15. (c)

$$D = \frac{2+1.9+1.8+1.6+1.5}{5} = 1.76 \,\mathrm{m}$$

:. Value of deviation from mean are
$$(2 - 1.76)$$
, $(1.9 - 1.76)$, $(1.8 - 1.76)$, $(1.6 - 1.76)$, $(1.5 - 1.76)$
= 0.24, 0.14, 0.04, -0.16, -0.26

Average of absolute deviations

$$d = \frac{0.24 + 0.14 + 0.04 + 0.16 + 0.26}{5} = 0.168 \,\mathrm{m}$$

Water distribution efficiency,

$$\eta_d = \left(1 - \frac{d}{D}\right) \times 100 = \left(1 - \frac{0.168}{1.76}\right) \times 100 = 90.45\%$$

16. (b)

As per Lane's, he suggested a weighting factor of 1/3 to horizontal creep and 1 for vertical creep.

$$\therefore \text{ Creep length,} \qquad L = 2d_1 + L/3 + 2d_2$$
$$= 2 \times 8 + 30/3 + 2 \times 10 = 46 \text{ m}$$

:. Hydraulic gradient
$$i = \frac{H}{I} = \frac{6}{46} = 0.13$$

17. (d)

Net vertical force,	$\Sigma V = W - U = 1036 - 674 = 362 \text{ kN}$
Net horizontal force,	$\Sigma H =$ Water force
	$= \frac{1}{2} \cdot \gamma_w H^2 = \frac{1}{2} \times 9.81 \times (10)^2 = 490.5 \text{ kN}$
: Shear friction factor,	SFF = $\frac{\mu \cdot \Sigma V + B.q}{\Sigma H}$

B = width of the base of foundation = 8.25 m; μ = 0.75; q = shear strength at the joint = 1400 kN/m²

SFF =
$$\frac{0.75 \times 362 + 8.25 \times 1400}{490.5} = 24.10$$

18. (d)

Net irrigation water required by wheat crop during base period

$$= \text{ crop requirement of water - rainfall}$$

$$= 60 - 12 = 48 \text{ cm} = 0.48 \text{ m}$$
Volume of water required, $V_1 = \text{ area} \times 0.48 \text{ m}^3$
Volume of water supplied by canal during the base period of 120 days with an irrigation efficiency of 70%
 $V_2 = 2.02 \times (120 \times 86400) \times 0.7 = 14660352 \text{ m}^3$
 $V_1 = V_2$

$$V_1 = V_2$$

 $A \times 0.48 = 14660352$
 $A = 30542400 \text{ m}^3 = 3054.24 \text{ ha}$

19. (c)

19.	(0)		
	Given,	Q =	50 m ³ /sec
	Silt factor,	f =	1.1
	As per Lacey's		
	.: Velocity,	<i>V</i> =	$\left(\frac{Qf^2}{140}\right)^{1/6} = \left(\frac{50 \times (1.1)^2}{140}\right)^{1/6} = 0.869 \text{ m/sec}$
	Bed slope,	S =	$\frac{f^{5/3}}{3340Q^{1/6}} = \frac{(1.1)^{5/3}}{3340(50)^{1/6}} = 0.0001828$
		S =	1 5469
20.	(a)		
	Leaching requirement,	LR =	$\frac{(EC)_i}{(EC)_d}$
		$(EC)_i =$	Electrical conductivity of irrigation water
			1.2 milli mho/cm
		(FC) =	Electrical conductivity of drained water
			$2 \times (EC)_{e}$
			Electrical conductivity of saturated soil extract
			10 milli mho/cm
	. .	LR =	$\frac{(EC)_i}{2.(EC)_e} \times 100 = \frac{1.2}{2 \times 10} \times 100 = 6\%$
	Also,	LR =	$\frac{D_d}{D_i}$
		$D_i =$	$C_u + D_d$
	C_u = consumptive use = 80 mm; D_d	d = depth	of water drained out; D_i = depth of water applied for irrigation
			$\frac{D_i - D_u}{D_i}$
		$\frac{6}{100} =$	$\frac{D_i - 80}{D_i}$
		$6 D_i =$	$100 D_i - 80 \times 100$
		$94 D_i =$	
		•	85.1 mm
21.	(c)	l	

Culturable command area = $10^5 \times \frac{75}{100} = 75000$ hectares for Kharif crop, Area under Kharif crop = $75000 \times \frac{50}{100} = 37500$ hectares Duty for Kharif crop = 1200 hectares/cumecs Required discharge for Kharif crop = $\frac{37500}{1200} = 31.25$ cumecs for Rabi crop, Area under Rabi crop = $75000 \times \frac{55}{100} = 41250$ hectares Required discharge at the head of canal = 31.25 /0.8 = 39.06 cumecs

(b) Given:

22.

 $H = 100 \,\mathrm{m}$ $S_c = 2.3$ C = 0.75

Now, considering 20% provision for losses,

Case (i): No Tension

 $B_{\min} = \frac{H}{\sqrt{S_c - C}}$

Duty for Rabi crop = 1400 hectares/cumecs

Discharge of the canal at the head of the field should be 31.25 cumecs (as it is maximum).

Required discharge for Rabi crop = $\frac{41250}{1400}$ = 29.46 cumecs

Case (ii): No sliding

$$B_{\min} = \frac{H}{\mu(S_c - C)}$$

Note: μ is not given so solve by case (i),

 $B_{\min} = \frac{100}{\sqrt{2.3 - 0.75}} = 80.32 \text{m}$

23. (a)

...

$$\begin{aligned} \tau_0 &= \gamma_w RS = 1000 \times 2.5 \times \frac{1}{10000} = 0.25 \text{ kg/m}^2 \\ \text{Now, on side slopes, shear stress} &= 0.75 \gamma_w RS = 0.75 \times 0.25 \\ &= 0.1875 \text{ kg/m}^2 \simeq 0.19 \text{ kg/m}^2 \end{aligned}$$

24. (d)

As per Blaney-Criddle formula

$$C_{u} \text{ or PET} = \Sigma \frac{k\rho}{40} [1.8t + 32]$$

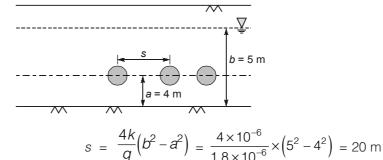
= $\frac{0.65 \times 9.3}{40} [1.8 \times 28 + 32] + \frac{0.72 \times 10.6}{40} [1.8 \times 25 + 32]$
= 27.14 cm

In above equation,
$$k = \text{consumptive use coefficient/crop factor}$$
; $p = \text{monthly %age of annual day light hours}$; $t = \text{temperature (°C)}$.

25. (d)

$$G_E = \frac{H}{d} \frac{1}{\pi \sqrt{\lambda}}$$

where,


$$G_E = \overline{d} \, \overline{\pi \sqrt{\lambda}}$$

H = Total head = 1.5 m

$$\lambda = \frac{1 + \sqrt{1 + \alpha^2}}{2}$$

d = Depth of d/s cutoff = 2 m
$$\alpha = \frac{b}{d} = \frac{13}{2} = 6.5$$

$$\Rightarrow$$

...

26. (b)

Spacing of tile drain,

27. (c)

The deficiency created due to fall of moisture from 25% to 17% is

$$= \frac{16}{9.81} \times \frac{75}{100} \times (0.25 - 0.17) = 0.0979 \text{ m}$$

: Quantity of water required to be supplied to the field irrigation requirement is

FIR =
$$\frac{NIR}{\eta_a} = \frac{0.0979}{0.75} = 0.1305 \text{ m} = 13.05 \text{ cm}$$

29. (c)

Water depth required at canal = $\frac{\text{water depth requied in the field}}{\eta_a \cdot \eta_c} = \frac{8}{0.72 \times 0.87} = 12.77 \text{ cm}$ Volume of water required = $8 \times 10^4 \times 12.77 \times 10^{-2} = 10216 \text{ k/}$

30. (d)

Depth of water in root zone at field capacity per metre depth of soil,

$$d_{w_1} = 0.5 \text{ m}$$

Depth of water in root zone at permanent wilting point per metre depth of soil,

$$d_{w_2} = 0.2 \text{ m}$$
Depth of soil, $d = 1 \text{ m}$,

$$\gamma_d = 12.5 \text{ kN/m}^3$$

$$\gamma_w = 10 \text{ kN/m}^3$$
Field capacity
$$= \frac{\gamma_w \cdot d_{w_1}}{\gamma_d \cdot d} = \frac{10 \times 0.5}{12.5 \times 1} = 0.40 = 40\%$$
Permanent wilting point
$$= \frac{\text{Field capacity}}{0.5} \times 0.2 = 0.16 = 16\%$$