CLASS TEST

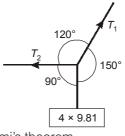
6.

(c)

CLASS TE	:ST						
				S.No.	:02 GH	1_ME_C_(090819
				E	ngineeri	ng Mechar	nics
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indre Pune Bhubaneswar Kolkata Patna Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612							
MECHANICAL ENGINEERING							
Date of Test : 09/06/2019							
ANSWER KEY > Engineering Mechanics							
1. (a)	7. (b)	13.	(d)	19.	(c)	25.	(c)
2. (b)	8. (c)	14.	(b)	20.	(c)	26.	(c)
3. (b)	9. (b)	15.	(a)	21.	(c)	27.	(d)
4. (a)	10. (a)	16.	(c)	22.	(b)	28.	(d)
5. (b)	11. (b)	17.	(a)	23.	(b)	29.	(c)

18. (d)

24. (c)

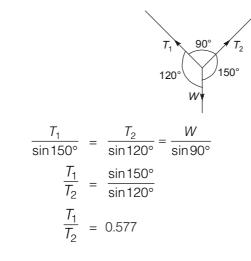

30. (b)

12. (c)

DETAILED EXPLANATIONS

1. (a)

As the body is in equilibrium, using Lami's theorem


	T_1		4×9.81
	sin 90°	=	sin(120°)
.:.	T_1	=	45.310 N
	T_2		4×9.81
	sin150°	=	sin120°
\Rightarrow	T_2	=	22.65 N

2. (b)

For a statically determinate frame, We know, m = 2j - 3Where, m = Number of members j = Number of joints On comparing with, y = mx + c $c = -3; m = \tan\theta = 2$ $\therefore \qquad \theta = 63.43^{\circ}$

3. (b)

Applying Lami's Theorem,

4. (a)

:..

.:.

Let V' and V'' be the speed of Y and X respectively after collision.

Applying conservation of momentum,

$$mV = 2mV' - mV''$$

...(a)

7

Applying conservation of kinetic energy,

$$\frac{1}{2}mV^{2} = \frac{1}{2} \times 2mV'^{2} + \frac{1}{2} \times mV''^{2} \qquad \dots (b)$$
Solving (a) and (b),

$$V' = 2V''$$


$$V = 3V''$$

$$\Rightarrow \qquad V'' = \frac{V}{3}$$

$$\Rightarrow \qquad V' = \frac{2V}{3}$$

5. (b)

Drawing free diagram of blocks, we have,

This is the reaction from the ground and it is the same force with which the 1000 N block press against the floor.

6. (c)

$$\omega = (12 + 9t - 3t^{2})$$

$$\frac{d\omega}{dt} = 9 - 6t = 0, t = 1.5 s$$

$$\omega_{max} = 12 + 9 \times 1.5 - 3 \times 1.5^{2}$$

$$= 12 + 13.5 - 6.75$$

$$= 18.75 rad/s$$

7. (b)

 \Rightarrow

...

...

$$R_2 = W\sqrt{2}$$
$$R_1 = W\sqrt{2} \times \frac{1}{\sqrt{2}} = W$$
$$W = 50 \text{ N}$$

 $R_2 \cos 45^\circ = R_1$ $R_2 \sin 45^\circ = W$

$$W = 50 \,\mathrm{N}$$
$$R_1 = 50 \,\mathrm{N}$$

Normal reaction, $N = 200 - P \sin 30^\circ = 200 - 100 \times 0.5 = 150 \,\mathrm{N}$ Frictional force, $F = \mu N = 0.3 \times 150 = 45 \,\mathrm{N}$

9. (b)

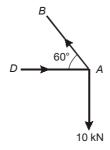
The velocity of point Q is zero, as the point Q is in contact with the surface.

 R_1

10. (a)

Torque,

$$T = mg \times \frac{L}{2}$$

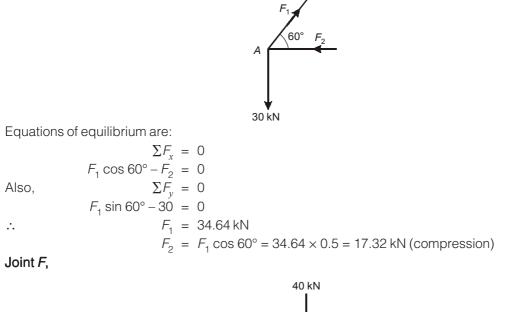

$$I_0 = \frac{mL^2}{3}$$

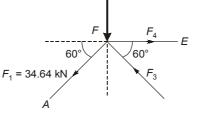
$$\alpha = \frac{T}{I_0} = \frac{mgL}{2} \times \frac{3}{mL^2} = \frac{1.5g}{L}$$

1

11. (b)

Taking joint A,


Resolving forces, as the trusses in equilibrium,


$$P_{AB} \times \sin 60^\circ = 10$$

 $P_{AB} = \frac{10}{\sin 60^\circ} = 11.5 \text{ kN} \text{ (Tensile)}$

12. (c)

 \Rightarrow

Consider the free body diagram of joint A with the direction of forces assumed as shown. **Joint A**,

$$\begin{split} \Sigma F_x &= 0 \\ F_4 - F_3 \cos 60^\circ - 34.64 \cos 60^\circ &= 0 \\ F_4 &= 0.5 F_3 + 17.32 \\ \Sigma F_y &= 0 \\ F_3 \sin 60^\circ - 34.64 \sin 60^\circ - 40 &= 0 \\ F_3 &= 80.81 \text{ kN} \\ F_4 &= 0.5 \times 80.81 + 17.32 \\ &= 57.72 \text{ (tension)} \\ \vdots \\ \end{split}$$

(d) 13.

$$\omega_{0} = 8000 \text{ rpm} = 837.33 \text{ rad/s}$$

$$t = 5 \text{ min} = 300 \text{ s}$$

$$\theta = \omega_{0}t + \frac{1}{2}\alpha t^{2}$$

$$\alpha = \frac{\omega - \omega_{0}}{t} = -\frac{837.33}{300} = -2.791 \text{ rad/s}^{2}$$

$$\theta = 837.33 \times 300 - 0.5 \times 2.791 \times (300)^{2} = 125604 \text{ rad}$$

$$\theta$$

Number of revolutions = $\frac{\theta}{2\pi}$ = 19990.49 \simeq 19991 ...

14. (b)

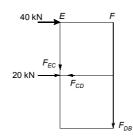
To stop the tiger in his track, momentum of the tiger should be balanced by momentum of bullets. If the number of bullets are n

Then

MV = n(mv) $60 \times 10 = n \times \frac{50}{1000} \times 150$ \Rightarrow n = 80 bullets \Rightarrow

Let ω be the angular velocity of disc

$$V_Q = r\omega$$


$$V_P = r\omega + r\omega = 2r\omega$$

$$\frac{V_P}{V_Q} = 2$$

16. (c)

...

From method of section

Considering equilibrium for horizontal

$$\Sigma \vec{F}_{H} = 0$$

$$40 - F_{CD} = 0$$

$$\therefore \qquad F_{CD} = 40 \text{ kN (Tensile)}$$
17. (a)

$$Coefficient of friction = \mu$$

$$\mu = \tan \theta$$
From figure,
$$\sin \theta = \frac{0.3}{0.75} = 0.4$$

$$\Rightarrow \qquad \theta = \sin^{-1}(0.4)$$

$$\therefore \qquad \theta = 23.57^{\circ}$$

$$\mu = \tan \theta$$

$$\tan 23.57^{\circ} = 0.436$$
or
$$mg \sin \theta = (f_{s})_{max} = \mu N$$

$$N = mg \cos \theta$$

$$\tan \theta = \mu$$

$$\mu = 0.436$$
18. (d)
For no tipping or prevent overturning

 $Ph < \frac{Wb}{2}$ where $W \rightarrow$ weight of block and $b \rightarrow$ width of block $h < \frac{Wb}{2P}$...(1)

and for slipping without tipping

	P > f(force of friction)	
	$P > \mu W$	(2)
From (1) and (2)		
	$h < \frac{b}{2\mu}$	

÷	$h < \frac{60}{0.6}$
	<i>h</i> < 100 mm
Option (d) is correct	

Option (d) is correct.

India's Best Institute for IES, GATE & PSUs

19. (c)

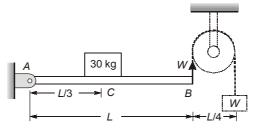
$$I = 2000 \times 0.25^{2} = 125 \text{ kg-m}^{2}$$

for retardation, $\omega = \omega_{0} + \alpha t$
 $\omega = 0$
$$\omega_{0} = \frac{2\pi N}{60} = \frac{2\pi \times 3000}{60}$$

 $t = 10 \text{ min} = 600 \text{ sec}$
 $\alpha = \frac{2\pi \times 3000}{60 \times 600} = 0.5236 \text{ rad/s}$

So, average frictional torque,

 $I\alpha = 65.44 \,\mathrm{Nm}$


20. (c)

:.

Resistance = mg + W = 200 × 9.81 + 100
= 2062 N

$$a = \frac{2062}{200}$$

 $a = 10.31 \text{ m/s}^2$
 $\frac{V^2}{2a} = S = \frac{4^2}{2 \times 10.31} = 0.776 \text{ m}$

21. (c)

W is the tension in the string.

Taking moments from end A

$$W \times L = 30 \times 9.81 \times L/3$$
$$W = 98.1 \,\mathrm{N}$$

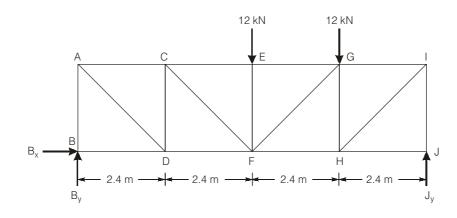
22. (b)

$$a = -t$$

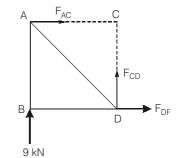
$$dV = -tdt$$

$$V = -\frac{t^2}{2} + C_1$$

$$\therefore \qquad 7.5 = 0 + C_1$$


$$C_1 = 7.5$$

$$V = -\frac{t^2}{2} + 7.5$$



$$V_{\text{at 3s}} = \frac{-3^2}{2} + 7.5 = 3 \text{ m/s}$$

 $V_{\text{at 3s}} = 3 \text{ m/s}$

23. (b)

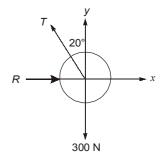
$$\begin{split} \Sigma M_{J} &= 0, \\ 12 \times 4.8 + 12 \times 2.4 &= B_{y} \times 9.6 \\ B_{y} &= 9 \text{ kN} \\ \Sigma F_{y} &= 0, \\ B_{y} + J_{y} &= 24 \text{ kN}, \quad J_{y} = 15 \text{ kN} \\ F_{CD} + 9 &= 0 \\ F_{CD} &= -9 \text{ kN} \\ \Sigma M_{C} &= 0, \\ -9 \times 2.4 + F_{DF} \times 1.8 &= 0 \end{split}$$

$$F_{DF} = \frac{9 \times 2.4}{1.8} = 12 \text{kN}$$

24. (c)

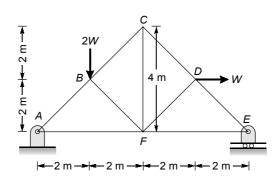
$$F_{BC} = F_{CD} = F_{DE} = F_{EF} = 0$$

25. (c)


In xy direction

$$-T\sin 20^{\circ} i + T\cos 20j + Ri - 300j = 0$$

$$(R - T\sin 20^{\circ})i + (0.947 - 300)j = 0$$
then
$$R - T\sin 20^{\circ} = 0$$


$$0.94 T - 300 = 0$$

$$(Tension)T = \frac{300}{0.94} = 319.15 N$$

26. (c)

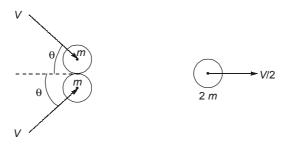
For the roller support at E, there will no horizontal reaction.

Taking moments about A,

 $V_E \times 8 = 2W \times 2 + W \times 2$ $V_E = 0.75 W$ $\therefore \qquad V_A = 2W - 0.75 W = 1.25 W$ $\therefore \qquad \text{Also, } H_A = W \qquad \text{[towards left]}$ $\therefore \qquad \tan \theta = \frac{H_A}{V_A} = \frac{W}{1.25W} = 0.8$ $\Rightarrow \qquad \theta = \tan^{-1}(0.8) = 38.65$

=

27. (d)

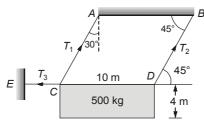

Kinetic Energy of the block = Work done on it – Work done against gravity

$$F.S. - mg \times s' = 18 \times PQ - 1 \times 10 \times OQ$$
$$18 \times 5 - 10 \times 4$$

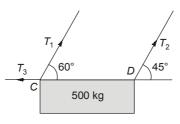
$$PQ = \sqrt{4^2 + 3^2} = 5$$

Kinetic energy of the block = 50 J

28. (d)


Momentum will be conserved in x-direction,

Let θ be the angle of velocity of each mass from x-direction as shown in figure.


$$mV\cos\theta + mV\cos\theta = 2m \times \frac{V}{2}$$

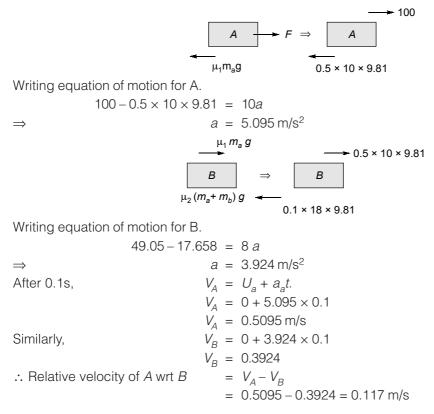
 $2\cos\theta = 1$

 $\cos\theta = \frac{1}{2}$ $\theta = 60^{\circ}$ So the total angle = $2\theta = 120^{\circ}$

29. (c)

Considering free body diagram of the block.

: The body is in equilibrium,


Now, taking moment about C

 $\therefore \qquad T_2 \sin 45^\circ \times 10 = 500 \times 5$

$$T_2 = 353.55 \,\mathrm{kg}$$

30. (b)

Drawing free-body diagram of A and B.

