## CLASS TEST

S.No. : 01 CH1\_EE\_E\_120619

**Control Systems** 



# MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

# CLASS TEST 2019-2020

## ELECTRICAL ENGINEERING

### Date of Test : 12/06/2019

| ANSWER KEY |     | >   | Control Systems |     |     |     |     |     |     |
|------------|-----|-----|-----------------|-----|-----|-----|-----|-----|-----|
| 1.         | (d) | 7.  | (b)             | 13. | (c) | 19. | (b) | 25. | (a) |
| 2.         | (b) | 8.  | (b)             | 14. | (b) | 20. | (b) | 26. | (d) |
| 3.         | (c) | 9.  | (b)             | 15. | (b) | 21. | (d) | 27. | (a) |
| 4.         | (d) | 10. | (b)             | 16. | (b) | 22. | (b) | 28. | (a) |
| 5.         | (d) | 11. | (b)             | 17. | (b) | 23. | (d) | 29. | (c) |
| 6.         | (b) | 12. | (d)             | 18. | (d) | 24. | (d) | 30. | (a) |

#### **DETAILED EXPLANATIONS**

#### 1. (d)

$$(s + 3 + j4) (s + 3 - j4) = 0$$
  

$$(s + 3)^{2} - (j4)^{2} = 0; s^{2} + 6s + 9 + 16 = 0; s^{2} + 6s + 25 = 0$$
  

$$\omega_{n} = \sqrt{25}; \quad \omega_{n} = 5 \text{ rad/sec}; \quad 2\zeta\omega_{n} = 6$$
  

$$\zeta = \frac{6}{2 \times 5} = 0.6$$

#### 2. (b)

Since, all the poles of the open loop system lie on the LHS of s-plane hence, the open loop system is stable. However, the number of encirclement to the critical point is two means two closed loop poles are located on the RHS of s-plane. Therefore, the closed loop system is unstable.

#### 3. (c)

For given Nyquist plot, We can find that, type of the system = 3 and complete the Nyquist plot as shown in figure For (-1, 0) point of position A,

Here,

*.*..

 $\Rightarrow$ 

ere, N = -2 and P = 0-2 = -Z,Z = 2

Therefore system is unstable at point A.

For (-1, 0) lying at position B,

N = P - ZHere, N = 0, P = 0 $\therefore$  Z = 0; i.e. stable system.

N = P - Z

Therefore, system is stable at point B.

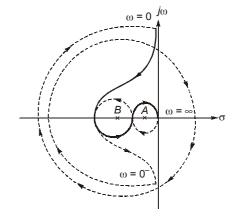
#### 4. (d)

Using Routh Table:

The Routh table construction procedure breaks down here, since the  $s^3$  row has all zeros. The auxiliary polynomial coefficients are given by the  $s^4$  row. Therefore the auxiliary polynomial is,

$$A(s) = s^4 + 5s^2 + 5$$
$$\frac{dA(s)}{ds} = 4s^3 + 10s$$

Replacing the  $s^3$  row in the Routh table with the coefficients of  $\frac{dA(s)}{ds}$ , we have





**s**<sup>6</sup> 1 6 10 5 **s**<sup>5</sup> 1 5 5 s<sup>4</sup> 1 5 5 s<sup>3</sup> 4 10  $\frac{20 - 10}{4} = 2.5$ **s**<sup>2</sup> 5  $2\frac{5-20}{2}=2$ s<sup>1</sup> 2.5 s 5

Examining the first column of this table we see that there are no sign changes. Hence, there is no root lying in the RHS of *s*-plane.

#### 5. (d)

 $2^{nd}$  order characteristics equation  $s^2 + 2 \xi \omega_n s + \omega_n^2 = 0$  have poles at  $-\xi \omega_n \pm j \omega_d$ On comparing, we have

 $\Rightarrow$ 

$$-1 \pm j\pi$$
  

$$\omega_d = \pi$$
  

$$t_p = \text{peak time} = \frac{\pi}{\omega_d} \text{ (first peak)}$$
  

$$= \frac{\pi}{\pi} = 1 \text{ sec.}$$

6. (b)

*.*.

$$A = \begin{bmatrix} 1 & -5 \\ 8 - g_1 & -g_2 \end{bmatrix}$$

 $\dot{x}_2 = (8 - g_1) x_1 - g_2 x_2$ 

 $\dot{x}_1 = x_1 - 5x_2$ 

Characteristic equation = |(sI - A)| = 0

and 
$$\xi = \frac{1}{\sqrt{2}}$$



$$(g_2 - 1) = 2\frac{1}{\sqrt{2}} \times \sqrt{2}$$

 $g_2 = 3 \text{ and } g_1 = 7$ 

7. (b)

Method 1:

$$H(s) = 1$$
  
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} = \frac{G(s)}{1 + G(s)}$$

$$\frac{s+4}{s^2+7s+13} = \frac{\frac{s+4}{s^2+6s+9}}{1+\frac{s+4}{s^2+6s+9}}$$

So,

 $G(s) = \frac{s+4}{s^2+6s+9}$  $G(s) = \frac{4}{9} \cdot \frac{(1+s/4)}{\left(1+\frac{6}{9}s+\frac{1}{9}s^2\right)}$ 

or,

(In time constant form)

Thus, open loop DC gain of given system =  $\frac{4}{9}$ .

Method 2:

$$G(s) = \frac{\text{Num}}{\text{Den} - \text{Num}} = \text{O.L.T.F.} \quad (H(s) = 1)$$
$$= \frac{s+4}{(s^2 + 7s + 13) - (s+4)} = \frac{s+4}{s^2 + 6s + 9}$$
$$= 0, \qquad G(0) = \frac{4}{9}$$

8. (b)

Put s

$$Error = 20 \log (2\xi)$$
$$Error = 20 \log (2 \times 1.4)$$
$$Error = 8.94 dB$$

9. (b)

$$G(s) = \frac{6}{(s^2 + 2s + 6)}$$

Comparing with the standard form

*.*:.

$$\omega_n = \sqrt{6} \text{ and } 2 \,\xi \omega_n = 2$$
  

$$\xi = 0.408$$
  

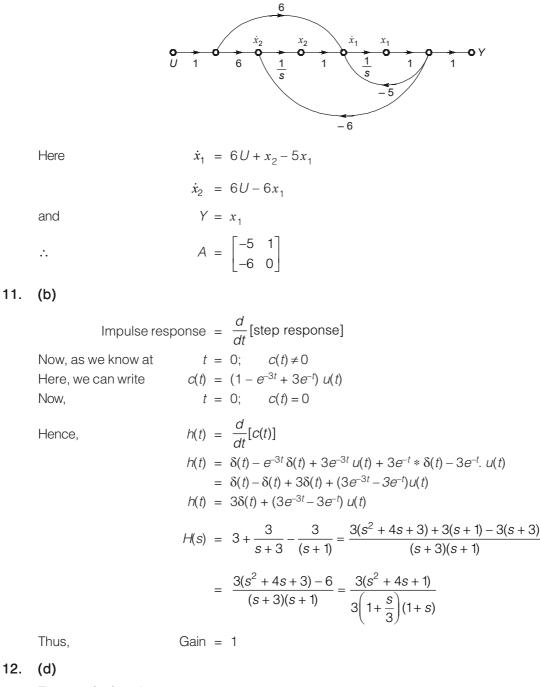
$$M_p = e^{\frac{-\pi\xi}{\sqrt{1-\xi^2}}} \times 100 = e^{\frac{-\pi \times 0.408}{\sqrt{1-0.408^2}}} \times 100$$
  

$$= 24.56\% \approx 24.6\%$$

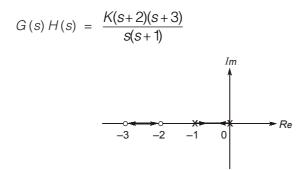




10. (b)



The transfer function





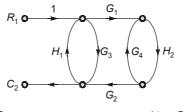
or,  $1 + \frac{K(s+2)(s+3)}{s(1+s)} = 0$ 

$$K = \frac{-(s^2 + s)}{s^2 + 5s + 6}$$
$$\frac{dK}{ds} = \frac{(s^2 + 5s + 6)(2s + 1) - (s^2 + s)(2s + 5)}{s^2 + 5s + 6} = 0$$
$$= -2.37 \text{ and } -0.634$$

Here break in point is -2.37 and break away point is -0.634.

#### 13. (c)

Assuming  $C_1 = 0$  and  $R_2 = 0$ .



Here, forward path 
$$P_1 = G_3$$
;  $\Delta_1 = (1 - G_4 H_2)$   
 $P_2 = G_1 G_2 H_2$ ;  $\Delta_2 = 1$ 

LOOPs

and

$$\begin{array}{rcl} L_{1} &=& G_{3}H_{1}, & & L_{2} &=& G_{4}H_{2}, \ L_{3} &=& G_{1}G_{2}H_{1}H_{2} \\ L_{4} &=& G_{3}G_{4}H_{1}H_{2} \mbox{(Non touching loops)} \end{array}$$

$$\therefore \qquad \frac{C_2}{R_1} = \frac{G_3(1 - G_4 H_2) + G_1 G_2 H_2}{1 - G_3 H_1 - G_4 H_2 - G_1 G_2 H_1 H_2 + G_3 G_4 H_1 H_2}$$

$$= \frac{G_3 + H_2(G_1G_2 - G_3G_4)}{1 - G_3H_1 - G_4H_2 + H_1H_2(G_3G_4 - G_1G_2)}$$

14. (b)

$$G(s) = \frac{40}{s^2(s+18)}$$

e<sub>ss</sub> due to parabolic input

$$e_{ss} = \frac{A}{K_a}$$

$$K_a = \lim_{s \to 0} \qquad s^2 G(s) = \lim_{s \to 0} s^2 \times \frac{40}{s^2(s+18)} = \frac{40}{18}$$

$$e_{ss} = \frac{3 \times 2}{40/18} = 2.7$$

where

MADE EASY

for IES, GATE & PSUs



15. (b)

$$\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = x(t)$$

$$s^2 Y(s) + 3s Y(s) + 2 Y(s) = X(s)$$

$$x(t) = 2 u(t)$$

$$X(s) = \frac{2}{s}$$

$$\therefore \quad (s^2 + 3s + 2) Y(s) = \frac{2}{s}$$

$$Y(s) = \frac{2}{s(s+2)(s+1)} = \frac{A}{s} + \frac{B}{s+2} + \frac{C}{s+1}$$

$$2 = A(s+2)(s+1) + B(s)(s+1) + C s(s+2)$$

$$s = 0; \qquad 2 = A2$$

$$A = 1$$

$$s = -1; \qquad 2 = -C$$

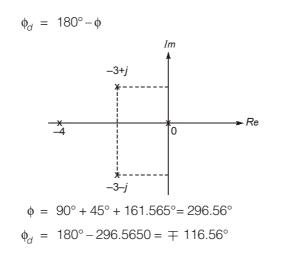
$$S = -2; \qquad 2 = 2B$$

$$B = 1$$

$$Y(s) = \frac{1}{s} + \frac{1}{s+2} - \frac{2}{s+1}$$

$$y(t) = [1 + e^{-2t} - 2e^{-1}] u(t)$$

16. (b)



17. (b)

*:*..

The transfer function can be

$$G(s) H(s) = \frac{K\left(1+\frac{s}{2}\right)}{s} = \frac{4\left(1+\frac{s}{2}\right)}{s}$$

or,

With starting slope of –20 dB/dec, at  $\omega$  = 2 rad/sec

K = 4

 $-20 \log_{10}(2) + 20 \log_{10}(4) = 6 \text{ dB}$ 

#### 18. (d)

The loop equations considering the Laplace transform of the network is

$$s I_{1}(s) + I_{1}(s) - I_{2}(s) = V_{i}(s)$$

$$(s + 1) I_{1}(s) - I_{2}(s) = V_{i}(s) \qquad \dots (i)$$
and  $I_{2}(s) - I_{1}(s) + I_{2}(s) + s I_{2}(s) = 0$ 

$$I_{1}(s) = (s + 2) I_{2}(s) \qquad \dots (ii)$$

Substituting equation (*ii*) in equation (*i*),

$$(s + 1) (s + 2) I_2(s) - I_2(s) = V_i(s)$$

also,

$$I_{2}(s) = \frac{V_{i}(s)}{s^{2} + 3s + 1}$$
$$V_{0}(s) = sI_{2}(s)$$
$$V_{0}(s) = \frac{sV_{i}(s)}{s^{2} + 3s + 1}$$
$$\frac{V_{0}(s)}{V_{i}(s)} = \frac{s}{s^{2} + 3s + 1}$$

$$\frac{s_{0}(s)}{s_{i}(s)} = \frac{s}{s^{2} + 3s + 1}$$

#### 19. (b)

Characteristic equation

$$\Rightarrow \qquad 1 + \frac{11\beta}{s^3 + 4s^2 + 3s + 1} = 0$$

1 + G(s) H(s) = 0

or, 
$$s^3 + 4s^2 + 3s + 1 + 11\beta = 0$$

Routh array

$$\begin{array}{c|c} S^{3} & 1 & 3 \\ S^{2} & 4 & (11\beta+1) \\ S^{1} & \frac{12-(11\beta+1)}{4} & 0 \\ S^{0} & (11\beta+1) \end{array}$$

for stability,

$$\begin{array}{rcl} \displaystyle \frac{12-(1\,1\beta+1)}{4} & \geq & 0 \\ \\ \mbox{or} & & 12 & \geq & (1\,1\,\beta+1) \\ \\ \mbox{or} & & \beta & \leq & 1 \end{array}$$

#### 20. (b)

Comparing with standard transfer function

$$G(s) = \frac{K(1+sT)}{(1+\alpha sT)}$$
$$T = \frac{21}{97}$$



15



$$\alpha T = \frac{1}{33}$$

$$\alpha = \frac{97}{33 \times 21} = 0.1399$$

 $\therefore \alpha < 1$  lead compensator

$$\phi = \sin^{-1} \left( \frac{1 - \alpha}{1 + \alpha} \right)$$
$$= \sin^{-1} \left( \frac{1 - 0.1399}{1 + 0.1399} \right) = 48.97^{\circ}$$

21. (d)

or,

Transfer function = 
$$\frac{64}{s^2 + 14s + 64}$$
  
Where,  

$$\omega_n^2 = 64$$

$$2\xi\omega_n = 14$$
or,  

$$\xi = \frac{14}{2 \times 8} = 0.875 \text{ (underdamped)}$$

$$\tau_{\text{sett}} = \frac{4}{\xi\omega_n} = \frac{4}{7} = 0.571 \text{ sec}$$

#### 22. (b)

Let K = 4 then,

$$G(s)H(s) = \frac{K}{(s+2)^2}$$
Characteristic equation = 1 + G(s)  $H(s) = s^2 + 4s + (4 + K) = 0$ 
Routh array
$$\begin{vmatrix} s^2 \\ 1 \\ 4 \\ 0 \\ s^0 \end{vmatrix} + K$$
For stability  $K > -4$ 
now, calculating  $\omega_{pc}$ 
or
$$-180^\circ = 2 \tan^{-1} \omega_{pc}$$
or
Hence
$$GM = 0 \ dB = \infty$$
and
$$|G(\omega)H(\omega)| = \frac{4}{(\sqrt{(j\omega_{gc})^2 + 2^2})^2} = 1$$

$$\frac{4}{(\omega_{gc}^2 + 4)} = 1$$
or
$$\omega_{gc}^2 = 0$$

$$\omega_{gc} = 0$$

$$PM = 180^\circ - \tan^{-1}\frac{\omega_{gc}}{2} - \tan^{-1}\frac{\omega_{gc}}{2}$$

$$= 180^\circ$$

#### 23. (d)

1 pole at origin ( $\omega = 0$ )

 $\downarrow$  -20 dB/dec

2 poles at  $\omega$  = 2 rad/s

 $\downarrow$  -60 dB/dec

2 poles at  $\omega = 4 \text{ rad/s}$ 

 $\downarrow$  -100 dB/dec

1 zero at  $\omega$  = 10 rad/s

 $\downarrow -80 \, \text{dB/dec}$ 

:. The slope of the line between frequency of 4 rad/s and 10 rad/sec is -100 dB/decade.

#### 24. (d)

Check for controllability-

÷

and  $|Q_C| = 0$ 

: System is uncontrollable.

Check for observably -

$$Q_o = \begin{bmatrix} C' : A'C' \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} : \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 0 \end{bmatrix}$$
$$\rho(A) \neq \rho(Q_o)$$

 $Q_C = [B:AB]$ 

 $\rho(A) \neq \rho(Q_{C})$ 

 $= \begin{bmatrix} 0 & 0 \\ 1 & -4 \end{bmatrix}$ 

Also

÷

$$|Q_0| = 0$$

: System is unobservable.

#### 25. (a)

Given, 
$$G(s)H(s) = \frac{1}{s^2(s-a)(s-b)(s-c)}$$

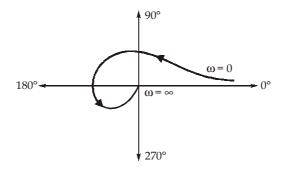
Put 
$$s = j\omega$$
,  $G(j\omega) H(j\omega) = \frac{1}{(j\omega)^2 (j\omega - a) (j\omega - b) (j\omega - c)}$ 

$$\begin{aligned} \left| G(j\omega) H(j\omega) \right| &= \frac{1}{\omega^2 \sqrt{\omega^2 + a^2} \cdot \sqrt{\omega^2 + b^2} \cdot \sqrt{\omega^2 + c^2}} \\ \text{when,} \qquad \omega = 0 \qquad \text{Magnitude} = \infty; \qquad \text{Phase} = 0^{\circ} \\ \omega = \infty \qquad \text{Magnitude} = 0; \qquad \text{Phase} = 270^{\circ} \end{aligned}$$



$$\angle G(j\omega) H(j\omega) = -\left[180^{\circ} + \left(180^{\circ} - \tan^{-1}\left(\frac{\omega}{a}\right)\right) + \left(180^{\circ} - \tan^{-1}\left(\frac{\omega}{b}\right)\right) + \left(180^{\circ} - \tan^{-1}\left(\frac{\omega}{c}\right)\right)\right]$$
  
$$\phi = \tan^{-1}\left(\frac{\omega}{a}\right) + \tan^{-1}\left(\frac{\omega}{b}\right) + \tan^{-1}\left(\frac{\omega}{c}\right)$$

**Note:** Since *a*, *b* and *c* are positive values, for  $\omega = 1$ , phase of  $G(j\omega) H(j\omega)$  will be a positive quantity. So, the polar plot will start into the first quadrant.



26. (d)

Characteristic equation

MADE EASY

st Institute for IES, GATE & PSUs

$$T(s) = \frac{C(s)}{R(s)} = \frac{50}{(s^2T + s)(1 + 0.5s) + 50}$$

$$Ts^{3} + (1 + 2T) s^{2} + 2s + 100 = 0$$
Using Routh array
$$s^{3} | T 2$$

$$s^{2} | (1 + 2T) 100$$

$$\frac{2(1 + 2T) - 100T}{(1 + 2T)} 0$$

$$\frac{2(1 + 2T) - 100T}{(1 + 2T)} 0$$

$$S^{0} | 100$$

$$T > 0 \text{ and } T > -\frac{1}{2}$$
Also
$$2 - 96 T > 0$$
or,
$$T < \frac{1}{48}$$
The system becomes unstable for

$$T = \frac{1}{48}$$

#### 27. (a)

The open loop transfer function is

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

- (a) Finite poles are at s = 0, -1, -2, (P = 3)Finite zeros are nil (z = 0)
- (b) Number of asymptotes = P Z = 3The centroid  $\sigma$  (or the meeting point of the asympotes) is at



$$\sigma = \frac{0-1-2}{3} = -1$$

The angles of the asymptotes are given by

$$\begin{aligned} \theta_{K} &= \frac{(2K+1)\pi}{P-Z}, \, K = 0,1 \, \dots, \, (\mid P-Z \mid -1) \\ &= \frac{(2K+1)\pi}{3}, K = 0,1, \, 2 \, = 60^{\circ}, \, 180^{\circ}, \, 300^{\circ} \, (-60^{\circ}) \end{aligned}$$

(c) The breakaway points are given by

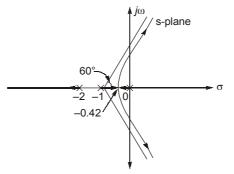
$$\frac{dK}{ds} = 0 \quad \text{or} \quad \frac{dK}{ds} = \frac{d}{ds}[-s(s+1)(s+2)] = 0$$

or  $-(3s^2 + 6s + 2) = 0$ 

or 
$$s = \frac{-6 \pm \sqrt{36 - 24}}{6} = -0.42, -1.577 \text{ (invalid)}$$

Thus, s = -0.42 is only valid break away point

(d) The number of branches of the root loci is the greater of *P* and *Z*, viz, 3. Using all the above information, we plot the root loci,



Hence choice (a) is correct.

#### 28. (a)

| Zeros                    | <i>s</i> = -2        |
|--------------------------|----------------------|
| Poles:                   | s = -1 + j2, -1 - j2 |
| <b>T</b> I I I I I I I I |                      |

The transfer function is

$$G(s) = \frac{K(s+2)}{(s+1-j2)(s+1+j2)}$$

where

 $K = \frac{\text{multiplication of vector lengths drawn from all poles}}{\text{multiplication of vector lengths drawn from all zeros}}$ 

$$= \frac{\sqrt{10} \times \sqrt{2}}{\sqrt{5}} = 2$$

$$G(s = j1) = \frac{2(j1+2)}{(j1+1-j2)(j1+1+j2)} = \frac{2(2+j1)}{(1-j1)(1+j3)}$$

$$= \frac{2 \times 2.236 \angle 26.6^{\circ}}{1.4142 \angle -45^{\circ} \times 3.162 \angle 71.57^{\circ}} = 1 \angle 0^{\circ}$$

Hence choice (a) is correct.



29. (c)

$$G(s) = \frac{10}{s(s+1)^2}$$
$$s = j\omega,$$

Putting

$$G(j\omega) = \frac{10}{j\omega(j\omega+1)^2} = \frac{10}{j\omega(-\omega^2+2j\omega+1)} = \frac{10}{-2\omega^2+j(\omega-\omega^3)}$$

This can be divided into the real and imaginary parts as shown below

$$G(j\omega) = \frac{10\{-2\omega^2 - j(\omega - \omega^3)\}}{\{-2\omega^2 + j(\omega - \omega^3)\}\{-2\omega^2 - j(\omega - \omega^3)\}}$$
$$= \frac{-20\omega^2}{4\omega^4 + (\omega - \omega^3)^2} - \frac{10j(\omega - \omega^3)}{4\omega^4 + (\omega - \omega^3)^2}$$

In the real axis at  $\omega = \omega_0$ , the imaginary portion goes to zero.

Hence 
$$\frac{\omega_0 - \omega_0^3}{4\omega_0^4 + (\omega_0 - \omega_0^3)^2} = 0$$

or

or

$$\omega_0(1-\omega_0^2) = 0$$

 $\omega_0 - \omega_0^3 = 0$ 

which gives the possible solution

$$\omega_0 = 0, 1$$

At  $\omega_0 = 0$ ,

Real part of 
$$G(j\omega) = \frac{-20\omega_0^2}{4\omega_0^4 + (\omega_0 - \omega_0^3)^2};$$
  
Re{ $G(j\omega)$ } =  $\infty$ 

Similarly at  $\omega_0 = 1$ ,

$$\operatorname{Re}\{G(j\omega)\} = \frac{-20}{4+0} = -5$$

Hence the real part and  $\omega_0$  are –5, 1 respectively.

#### 30. (a)

The equations of performance for the system are.

$$B_{1}(\dot{X}_{1} - \dot{X}_{0}) + K_{1}(X_{1} - X_{0}) = K_{2}X_{0}$$
  
or  $(sB_{1} + K_{1})X_{1}(s) - (sB_{1} + K_{1})X_{0}(s) = K_{2}X_{0}(s)$   
 $\frac{X_{0}(s)}{X_{1}(s)} = \frac{sB_{1} + K_{1}}{sB_{1} + K_{1} + K_{2}}$ 

$$T = \frac{K_{1}\left(1 + \frac{B_{1}s}{K_{1}}\right)}{(K_{1} + K_{2})\left(1 + \frac{sB_{1}}{K_{1} + K_{2}}\right)}$$

Let

$$\frac{K_1 + K_2}{K_1} = a$$

a > 1

where

and

 $\frac{B_1}{K_1 + K_2} = \mathsf{T};$ 

Then, 
$$\frac{X_0(s)}{X_1(s)} = \frac{1}{a} \left( \frac{1 + aTs}{1 + Ts} \right)$$

Therefore zero is nearer to origin than pole i.e. Lead network.

010 1.0. L