

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

FLUID MECHANICS

CIVIL ENGINEERING

Date of Test: 08/06/2022

AN	SWER KI	EY >	Fluid	Mecha	nics				
1.	(d)	7.	(b)	13.	(a)	19.	(c)	25.	(b)
2.	(c)	8.	(b)	14.	(d)	20.	(c)	26.	(c)
3.	(b)	9.	(c)	15.	(b)	21.	(d)	27.	(d)
4.	(a)	10.	(b)	16.	(b)	22.	(c)	28.	(a)
5.	(d)	11.	(a)	17.	(c)	23.	(d)	29.	(b)
6.	(c)	12.	(b)	18.	(c)	24.	(a)	30.	(c)

DETAILED EXPLANATIONS

1. (d)

$$P_1 = P_2 = 4000 \text{ Pa}$$

$$D_1 = D_2 = 30 \text{ cm}$$

 $F_x F_y =$ Force exerted on the fluid

Momentum eq. in y-direction.

$$F_{y} - P_{2}A_{2} = \dot{m}V_{2} - \dot{m}(0)$$

$$F_{y} = \dot{m}V_{2} + P_{2}A_{2}$$

$$= (\rho A_{2}V_{2})V_{2} + P_{2}A_{2}$$

$$= \left[(1000)(5)^{2} \right] + 4000 \left[\frac{\pi}{4} (0.3)^{2} \right]$$

$$= 2.05 \text{ kN}$$

2. (c)

Whirlpool is a example of free vortex flow.

So,
$$v \propto \frac{1}{r}$$
 i.e. $vr = \text{constant}$

Now,
$$v_1 = 10 \text{ m/s}, r_1 = 20 \text{ cm}$$

When $r_2 = 50 \text{ cm}$

$$v_2 = \frac{v_1 r_1}{r_2} = \frac{10 \times 20}{50} = 4 \text{ m/s}$$

According to fundamental equation of vortex flow,

$$dP = \frac{\rho v^2 dr}{r} - \rho g dz \left\{ v = \frac{c}{r} \right\}$$

$$0 = \frac{\rho C^2}{r^2 r} dr - \rho g dz$$

$$dz = \frac{\rho C^2}{r^3 g} dr$$

Int. it

$$Z = \frac{c^2}{g} \times -\frac{1}{2} \times \left[\frac{1}{r^2} \right]_{0.5}^{\infty}$$

$$z = 0.816 \,\mathrm{m}$$

$$[c = vr = 0.2 \times 10]$$

$$z_2 - z_1 = \frac{\omega^2}{2g} \Big[R_2^2 - R_1^2 \Big]$$

$$0.6 = \frac{\omega^2}{2g} \Big[0.4^2 - 0.15^2 \Big]$$

 $\omega = 9.253 \text{ rad/sec}$

$$\frac{2\pi N}{60} = 9.253$$

$$N = 88.36 \text{ rpm}$$

4. (a)

Shear stress,
$$\tau = \mu \frac{du}{dy} = 0.44 \times \frac{4}{0.018}$$

= 97.8 Pa

5. (d)

In Navier's-Stoke equation viscous force term is considered and in all the above mentioned flow viscous force can't be neglected.

6. (c)

$$K = 2.1 \times 10^9 \text{ Pa}; E = 2.1 \times 10^{11} \text{ Pa}$$

 $\rho = 1000 \text{ kg/m}^3; D = 400 \text{ mm}$
 $t = 4 \text{ mm}$

Velocity of propagation of water hammer pressure

$$= \sqrt{\frac{K/\rho}{1 + \frac{KD}{Et}}} = \sqrt{\frac{2.1 \times \frac{10^9}{1000}}{1 + 1}} = 1024.7 \text{ m/s}$$

In a turbulent boundary layer, near the boundary large velocity change occurs in a relatively small vertical distance, and hence at the boundary the velocity gradient $\left(\frac{du}{dy}\right)$ is steeper in turbulent boundary layer than in a laminar boundary layer. The velocity distribution in a turbulent boundary layer follows a logarithm law, which can also be represented by a power law of the type.

$$\frac{u}{U} = \left(\frac{y}{\delta}\right)^r$$

The value of the exponent n is approximately (1/7) for the moderate Reynolds number.

8. (b)

$$\delta^* = \int_0^{\delta} \left(1 - \frac{u}{U} \right) dy = \int_0^{\delta} \left(1 - \left(\frac{y}{\delta} \right)^{1/6} \right) dy$$

$$\delta^* = \left[y - \frac{6y^{7/6}}{7\delta^{1/6}} \right]_0^{\delta} = \delta - \frac{6\delta}{7} = \frac{\delta}{7}$$

$$\therefore \quad \frac{\delta^*}{\delta} = \frac{1}{7}$$

9. (c)

11. (a)

For parallel connection in pipe,

Total discharge, $Q = 250 lt/s = 0.25 m^3/s$

$$Q = Q_1 + Q_2$$

$$Q_1 + Q_2 = 0.25 \text{ m}^3/\text{s} \qquad \dots \text{ (i)}$$

For parallel connection head loss in both pipes will be same so,

$$h_{f1} = h_{f2}$$

$$\frac{fL_1Q_1^2}{12.1 \times d_1^5} = \frac{fL_2Q_2^2}{12.1 \times d_2^5} \qquad [\because L_1 = L_2]$$

$$\frac{Q_1^2}{0.8^5} = \frac{Q_2^2}{0.6^5}$$

$$\frac{Q_1}{Q_2} = \left(\frac{0.8}{0.6}\right)^{5/2} = 2.05$$

$$Q_1 = 2.05 Q_2 \qquad \dots (ii)$$

By equations (i) and (ii),

$$2.05Q_2 + Q_2 = 0.25$$
, $Q_2 = 0.0814$ m³/s $Q_1 = 0.25 - 0.082 = 0.168$ m³/s

13. (a)

Let V = Volume of metallic body 45% of volume is in oil

i.e.,
$$V_{\text{oil}} = 45\% \text{ of } V = 0.45V$$

and $V_{\text{water}} = 0.55V$

For equilibrium condition,

Net buoyant force =
$$(F_B)_w + (F_B)_{oil}$$

= Weight of body
 $M_b g = \rho_w \ V_w g + \rho_{oil} \ V_{oil} g$
 $M_b = \rho_w V_w + \rho_{oil} \ V_{oil}$
 $\rho_b V = \rho_w \times 0.55 V + \rho_{oil} \times 0.45 V$
or $\rho_b = \rho_w \times 0.55 + \rho_{oil} \times 0.45 = 1000 \times 0.55 + 700 \times 0.45 = 550 + 315 = 865 \text{ kg/m}^3$

15. (b)

$$P_A = 4.2 \text{ MPa}$$
 [Absolute pressure]
 $P_{\text{atm}} = 101 \text{ kPa}$
 $\rho = 1050 \text{ kg/m}^3$
 $g = 9.8 \text{ m/s}^2$
 $P_A = P_{\text{atm}} + \rho g H$
 $4.2 \times 10^6 = (101 \times 10^3) + [1050 \times 9.81 \times H]$
 $H = 397.94 \text{ or } 398 \text{ m}$

16. (b)

For 2D-flow velocity field is:

$$\vec{V} = \frac{x}{x^2 + y^2} \hat{i} + \frac{y}{x^2 + y^2} \hat{j}$$
So
$$U = \frac{x}{x^2 + y^2} \text{ and } V = \frac{y}{x^2 + y^2}$$

$$a_x = U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y}$$

$$= \frac{x}{x^2 + y^2} \frac{\partial}{\partial x} \left[\frac{x}{x^2 + y^2} \right] + \frac{y}{x^2 + y^2} \frac{\partial}{\partial y} \left[\frac{x}{x^2 + y^2} \right]$$

$$= \frac{x}{x^2 + y^2} \left[\frac{x(-2x)}{(x^2 + y^2)^2} + \frac{1}{x^2 + y^2} \right] + \frac{y}{x^2 + y^2} \left[\frac{-x(2y)}{(x^2 + y^2)^2} \right]$$

$$= \frac{-2x^3}{(x^2 + y^2)^3} + \frac{x}{(x^2 + y^2)^2} - \frac{2xy^2}{(x^2 + y^2)^3}$$

$$= \frac{-2x^3 + x(x^2 + y^2) - 2xy^2}{(x^2 + y^2)^3}$$

$$= \frac{-2x^3 + x(x^2 + y^2) - 2xy^2}{(x^2 + y^2)^3}$$

$$= \frac{-x(x^2 + y^2)}{(x^2 + y^2)^3}$$

$$= \frac{-x(x^2 + y^2)}{(x^2 + y^2)^3}$$

$$= \frac{x}{(x^2 + y^2)^2}$$

$$a_y = U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y}$$

$$= \frac{x}{x^2 + y^2} \frac{\partial}{\partial x} \left[\frac{y}{x^2 + y^2} \right] + \frac{y}{x^2 + y^2} \frac{\partial}{\partial y} \left[\frac{y}{x^2 + y^2} \right]$$

$$= \frac{x}{x^2 + y^2} \frac{(-2xy)}{(x^2 + y^2)^2} + \frac{y}{x^2 + y^2} \times \left[\frac{-2y^2}{(x^2 + y^2)^2} + \frac{1}{x^2 + y^2} \right]$$

$$= \frac{-2x^2y}{(x^2 + y^2)^3} - \frac{2y^3}{(x^2 + y^2)^3} + \frac{y}{(x^2 + y^2)^2}$$

$$= \frac{-2x^2y - 2y^3 + y(x^2 + y^2)}{(x^2 + y^2)^3} = \frac{-x^2y - y^3}{(x^2 + y^2)^3} = \frac{-y(x^2 + y^2)}{(x^2 + y^2)^3}$$

$$a_y = \frac{-y}{(x^2 + y^2)^2}$$

17. (c)

Given velocity field,

$$\vec{V} = (-x^2 + 3y)\hat{i} + (2xy)\hat{j}$$

where

$$u = -x^2 + 3y \text{ and } v = 2xy$$

The acceleration components along x and y-axis.

$$a_{x} = u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y}$$

and

$$a_y = U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y}$$

$$= (-x^2 + 3y) \times (-2x) + 2xy \times 3$$

$$= 2x^3 - 6xy + 6xy = 2x^3$$

$$a = (-x^2 + 3y) \times 2y + 2xy \times 2x$$

and

$$a_y = (-x^2 + 3y) \times 2y + 2xy \times 2x$$

= $-2yx^2 + 6y^2 + 4x^2y = 2yx^2 + 6y^2$

At point (1, -1),

$$a_x - 2$$

 $a_y = 2 \times (-1) \times 1 + 6 \times (-1)^2$
 $= -2 + 6 = 4$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} = 2i + 4\hat{j}$$

Resultant acceleration.

$$a = \sqrt{4 + 16} = \sqrt{20}$$
$$= \sqrt{4 \times 5} = 2\sqrt{5}$$

18. (c)

$$\frac{\partial \left(u^2 \right)}{\partial x} + \frac{\partial \left(uv \right)}{\partial v}$$

By differentiating:

$$\Rightarrow 2u \left[\frac{\partial u}{\partial x} \right] + u \frac{\partial v}{\partial y} + v \frac{\partial u}{\partial y}$$
$$\partial u \left[\partial u \partial v \right]$$

$$\Rightarrow u \frac{\partial u}{\partial x} + \left[u \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial y} \right] + v \frac{\partial u}{\partial y}$$

According to continity eq. : $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}$$

19. (c)

As per given data, ρ_{air} = 1.23 kg/m³

$$P_1$$
 $P_2 = P_{atm}$ $P_2 = 50 \text{ m/s}$ $P_1 = 0.02 \text{ m}^2$

$$A_1V_1 = A_2V_2$$

 $0.2 \times V_1 = 0.02 \times 50$
 $V_1 = \frac{1}{10} \times 50 = 5 \text{ m/s}$

Applying BE

$$P_1 - P_2 = \left(\frac{50^2 - 5^2}{2}\right) \times 1.23$$

= 1522.125 Pa
= 1.52 kPa

20. (c)

Reynold number,

$$Re_{x} = \frac{u_{\infty}x}{v} = \frac{2 \times 1}{1.5 \times 10^{-5}} = 1.33 \times 10^{5}$$

$$\delta = \frac{4.64x}{\sqrt{Re_{x}}} = \frac{4.64 \times 1}{\sqrt{1.33 \times 10^{5}}} = 0.0127$$
Now, $\frac{du}{dy} = u_{\infty} \left[\frac{3}{2} \cdot \frac{1}{\delta} - \frac{3}{2} \left(\frac{y^{2}}{\delta^{3}} \right) \right]$

$$\left. \frac{du}{dy} \right|_{y=0} = \frac{3u_{\infty}}{2\delta}$$

Now, shear stress,

$$\tau_0 = \mu \left(\frac{du}{dy}\right)_{y=0} = \mu \times \frac{3u_{\infty}}{2\delta}$$

$$= \frac{3u_{\infty} \times v \times \rho}{2\delta}$$

$$= \frac{3 \times 2 \times 1.5 \times 10^{-5} \times 1.23}{2 \times 0.0127}$$

$$= 4.36 \times 10^{-3} \text{ N/m}^2$$

21. (d)

Radius: $r = 10 \, \text{mm}$

.. Diameter: $d = 2r = 2 \times 10 = 20 \text{ mm} = 0.02 \text{ m}$

$$\dot{m} = 36 \text{ kg/hr} = \frac{36}{3600} = 0.01 \text{kg/s}$$
 $\mu = 0.001 \text{ kg/ms}$

Reynolds number: $Re = \frac{\rho Vd}{\mu}$

From continuity equation, $\dot{m} = \rho AV$

or
$$V = \frac{\dot{m}}{\rho A} = \frac{\dot{m}}{\frac{\rho \pi d^2}{4}} = \frac{4 \, \dot{m}}{\rho \pi d^2}$$

$$Re = \frac{\rho d}{\mu} \times \frac{4\dot{m}}{\rho \pi d^2} = \frac{4\dot{m}}{\pi \mu d}$$
$$= \frac{4 \times 0.01}{3.14 \times 0.001 \times 0.02} = 637$$

22. (c)

Instantaneous velocity : $u = \overline{u} + u'$

The time-average of the fluctuating velocity

$$\overline{u}' = \frac{1}{T} \int_{0}^{T} u' dt = \frac{1}{T} \int_{0}^{T} (u - \overline{u}) dt$$

$$= \frac{1}{T} \int_{0}^{T} u dT - \frac{1}{T} \overline{u} \int_{0}^{T} dt = \overline{u} - \frac{\overline{u}}{T} T$$

$$= \overline{u} - \overline{u} = \mathbf{0}$$

24. (a)

Shear stress on wall,

$$\tau_{_{W}} = -\frac{\partial \rho}{\partial x} \frac{R}{2}$$

where
$$-\frac{\partial p}{\partial x} = \frac{\Delta p}{L}$$

$$\Delta p$$
 = Pressure drop

and
$$R = \frac{D}{2}$$

$$\therefore \qquad \tau_{w} = \frac{\Delta p}{L} \times \frac{D}{2 \times 2} = \frac{\Delta pD}{4L}$$

25. (b)

Total discharge,

$$Q = Q_1 + Q_2 + Q_2$$

 $Q = Q_1 + Q_2 + Q_2 \label{eq:Q}$ Head loss: $h_L = h_{L1} = h_{L2} = h_{L3} \label{eq:Delta}$

For the pipe connected in series,

Total discharge,

$$Q = Q_1 = Q_2 = Q_3$$

Head loss;
$$h_L = h_{L_1} + h_{L_2} + h_{L_3}$$

26. (c)

Head loss:
$$h_f = \frac{32 \mu \overline{u} L}{\rho g D^2}$$

$$h_1 = \frac{32\mu \overline{u}L}{\rho q D^2}$$

and
$$h_2 = \frac{32\mu \times 2\overline{u}L}{\rho g(D/2)^2}$$

$$= \frac{32\mu 2\overline{u}L \times 4}{\rho gD^2} = \frac{8 \times 32\mu \overline{u}L}{\rho gD^2}$$

$$\frac{h_2}{h_1} = \frac{8 \times 32\mu \overline{u}L}{\rho gD^2} \times \frac{\rho gD^2}{32\mu \overline{u}L} = 8$$

27. (d)

$$F_x = \rho g \overline{h} A_v = (10^3)(10) \left(\frac{5}{2}\right) (5 \times 1)$$

$$= 125 \text{ kN per unit width}$$

$$F_y = \rho g \forall$$

where
$$\forall = \frac{\pi(5)^2}{6} - \left(\frac{1}{2} \times 5 \times 5\cos 30^{\circ}\right) = 2.264 \text{ m}^3$$

$$F_{\rm y} = (10)^3 \, (10) \, (2.264) = 22.64 \, {\rm kN}$$
 Resultant force per unit width,

$$F_R = \sqrt{F_x^2 + F_y^2} = \sqrt{125^2 + 22.64^2}$$

= 127.03 kN

28. (a)

Assume H is the level of water in the tank in steady condition.

For steady water level in the tank

Discharge through orifice

= Water enters in the tank

$$c_d \cdot a \cdot \sqrt{2gH} = 20 \times 10^{-3}$$

$$0.8 \times \frac{\pi}{4} (0.1)^2 \sqrt{2gH} = 0.02$$

$$H = 0.52 \text{ m}$$

$$Q = 0.21 \text{ m}^{3}/\text{s}$$
Allowable velocity = 0.75 m/s
$$f = 0.01$$

$$g = 9.81 \text{ m/s}^{2}$$

$$Q = AV$$

$$0.21 = \left(\frac{\pi}{4}d^{2}\right)(0.75)$$

$$\Rightarrow d = 0.597 \text{ m}$$

$$\Rightarrow h_{f} = \frac{fIV^{2}}{2gd} = \frac{0.01 \times 100 \times (0.75)^{2}}{2 \times 9.81 \times 0.597} \text{m}$$

$$= 4.8 \text{ cm}$$

$$= 0.048 \text{ m}$$

$$\Rightarrow \text{Min. gradient} = \frac{h_{f}}{I} = \frac{4.8 \text{ cm}}{100 \text{ m}}$$

Hence, answer is 4.8.

30. (c)

Given data:

Density of air,

$$\rho_a = 1.2 \text{ kg/m}^3$$

Density of water,

$$\rho_{w} = 1000 \, \text{kg/m}^{3}$$

Differential head in manometer,

$$h = 10 \text{ mm of water} = 0.01 \text{ m of water}$$

This reading is the dynamic pressure head. Hence dynamic pressure,

$$p_{\text{dyn}} = (\rho g h)_{\text{water}} = \rho_w g h$$

= 1000 × 9.81 × 0.01 = 98.1 N/m²

also
$$p_{\text{dyn}} = \left(\frac{1}{2}\rho V^2\right)_{\text{air}} = \frac{1}{2}\rho_a V^2$$

$$\therefore 98.1 = \frac{1}{2} \times 1.2 \times V^2$$

or
$$V^2 = 163.5$$

 $V = 12.78$ m/s

Alternatively

$$V = \sqrt{2gh}$$

$$h = x \left(\frac{\rho_m}{\rho} - 1 \right)$$

where

x = Reading of differential manometer

$$= 10 \times 10^{-3} \text{ m}$$

 ρ_{m} = Density of manometric fluid

 $= 1000 \, \text{kg/m}^3$

 ρ = Density of following fluid = 1.2 kg/m³

$$\therefore V = \sqrt{2 \times 9.81 \times 10 \times 10^{-3} \left(\frac{1000}{1.2} - 1\right)}$$

 $V = 12.779 \text{ m/s} \approx 12.8 \text{ m/s}$