- CLASS TEST						S.No. : 01PT_ABC_300522					
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna											
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612											
CONTROL SYSTEMS											
			EC	-		EE					
		ſ		-	 : 09/0	EE 6/202	2				
ANSW	/ER KEY	•		-	 : 09/0		2				
ANSW 1.	/ER KEY (b)			-	(c)		2 (d)		(a)		
		>	Date of	fTest		6/202		 25. 26.	(a) (d)		
1.	(b)	>	Date of	f Test : 13.	(c))6/202: 19.	(d)				
1. 2.	(b) (d)	7.	(d) (b)	f Test : 13. 14.	(c) (c))6/202: 19. 20.	(d) (b)	26.	(d)		
1. 2. 3.	(b) (d) (b)	7. 8. 9.	(d) (d) (d)	f Test : 13. 14. 15.	(c) (c) (a)	19. 20. 21.	(d) (b) (b)	26. 27.	(d) (b)		

Detailed Explanations

1. (b)

As the three blocks are connected in cascade the overall transfer function is given by the multiplication of individual blocks.

$$\therefore \qquad x_1 \times x_2 \times x_3 = \frac{(s+1)}{s(s+2)(s+3)}$$
$$\frac{1}{s(s+2)} \times \frac{(s+2)}{(s+3)} \times x_3 = \frac{(s+1)}{s(s+2)(s+3)}$$
$$x_3 = \frac{(s+1)}{(s+2)}$$

2. (d)

At $\omega = 0$, the plot for system I, started from -270° hence it represents a type 3 system. At $\omega = 0$, the plot for system II has slope of 0 dB/dec and therefore it is a type 0 system.

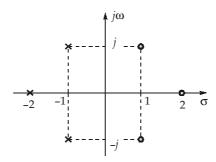
3. (b)

The Routh's table can be formed as

$$\begin{array}{c|cccc} s^{3} & 4 & 4 \\ s^{2} & 3(s^{2}) & 3(0) \\ s^{1} & (0)6 & (0) \\ s^{0} & \frac{18-0}{6} = 3 \end{array}$$

as there is no sign change in the first column of Routh array thus, there will be no pole lie on the RHS of *s*-plane. Also the row of zero occurs that indicates the complex conjugate poles exists on $j\omega$ axis.

4. (d)



5. (b)

Here, the encirclement to the critical point is 1 (in clock wise direction) and 2 (in counter clockwise direction).

.:.

10 EC & EE

6. (c)

Closed loop transfer function $\frac{C(s)}{R(s)} = \frac{K}{s^2 + 10s + K}$ Here, $2\xi\omega_n = 10$ $\xi\omega_n = 5$ Therefore, $\omega_n = \frac{5}{0.75}$ $\therefore \qquad K = \omega_n^2 = \left(\frac{5}{0.75}\right)^2 = 44.44$

7. (d)

$$T(s) = \frac{C(s)}{R(s)} = \frac{10(s+2)}{(s^2+4s+8)}$$

\therefore The step response *C*(*s*) is,

$$C(s) = \frac{10(s+2)}{(s^2+4s+8)} \times R(s) = \frac{10(s+2)}{s(s^2+4s+8)}$$

and the steady state response is,

$$\lim_{t \to \infty} c(t) = \lim_{s \to 0} sC(s) = \lim_{s \to 0} s \frac{10(s+2)}{s(s^2+4s+8)} = \frac{10}{4} = 2.5$$

8. (b)

The roots of the characteristic equation are given by,

$$s_{1,2} = -\xi \omega_n \pm \omega_n \sqrt{1 - \xi^2}$$
Here,

$$-\xi \omega_n = -3$$

$$\omega_n = \frac{3}{\xi}$$
...(i)

and

$$\omega_n \sqrt{1-\xi^2} = 2 = \omega_d \qquad \dots (ii)$$

By putting the value of ω_n in equation (ii), we get,

or

$$\frac{9}{\xi^2} \times (1 - \xi^2) = 4$$

9(1 - \xi^2) = 4\xi^2
9 - 9\xi^2 - 4\xi^2 = 0
13\xi^2 = 9

 $\frac{3}{\xi}\sqrt{1-\xi^2} = 2$

or

or
$$\xi = \sqrt{\frac{9}{13}} = \frac{3}{\sqrt{13}}$$

India's Beet Institute for IES, GATE & PSUs

9. (d)

The steady state offset is given by,

$$e_{\text{off}} = \lim_{s \to 0} sC(s) \Big|_{R(s) = 0}$$

When $R(s) = 0$,
$$C(s) = D(s) - C(s) \left[\frac{4K}{(2s+1)} \right]$$
$$C(s) = \frac{D(s)}{1 + \frac{4K}{(2s+1)}}$$
$$e_{\text{off}} = \lim_{s \to 0} \frac{s \cdot \frac{0.3}{s} (2s+1)}{(2s+1) + 4K}$$
or
$$e_{\text{off}} = \frac{0.3}{4K+1}$$
For $e_{\text{off}} = 0$,
$$K = \infty$$

1

10. (a)

The characteristic equation is given by, 1 + G(s) H(s) = 0

Here,

$$G(s) = \frac{4}{s(s+0.2)} \text{ and } H(s) = (1+2s)$$

$$\therefore \qquad 1 + \frac{4(1+2s)}{s(s+0.2)} = 0$$

$$s^{2} + 0.2s + 8s + 4 = 0$$

$$s^{2} + 8.2s + 4 = 0$$

11. (a)

The transfer function of the above circuit is,

$$\frac{E_0(s)}{E_i(s)} = \frac{R_2 R_4 (R_1 C_1 s + 1)}{R_1 R_3 (R_2 C_2 s + 1)} = \frac{R_4 C_1}{R_3 C_2} \left(\frac{s + \frac{1}{R_1 C_1}}{s + \frac{1}{R_2 C_2}} \right)$$
$$= K \alpha \left(\frac{1 + sT}{1 + \alpha sT} \right) = K_c \left(\frac{s + \frac{1}{T}}{s + \frac{1}{\alpha T}} \right)$$
$$T = R_1 C_1 \text{ and } \alpha T = R_2 C_2$$

Here, If $R_1C_1 > R_2C_1$

$$C_2$$
 then $\alpha < 1$.

Thus, it represents a phase lead network.

12. (d)

The CE of the given system is,

$$1 + G(s) = 0$$

$$1 + \frac{2s^2 + as + 50}{(s+1)^2(s+2)} = 0$$

 $(s^2 + 2s + 1)(s + 2) + 2s^2 + as + 50 = 0$ $s^{3} + 2s^{2} + s + 2s^{2} + 4s + 2 + 2s^{2} + as + 50 = 0$ $s^3 + 6s^2 + (5 + a)s + 52 = 0$ For system to be stable (5 + a)6 > 5230

$$+ 6a > 52$$

 $6a > (52 - 30)$
 $a > \frac{22}{6}$
 $a > 3.667$

13. (c)

As the system is said to be stable, Therefore, no open loop pole in the RHS.

$$P = 0$$
The intersection point $\left(-\frac{4}{5}K, 0\right)$ and $K > \frac{5}{4}$.

$$\frac{4}{5}K > 1$$
or
$$-\frac{4}{5}K < -1$$

or

That means the Nyquist plot encircles the critical point two times in the clockwise direction Hence, N = -2

$$\Rightarrow \qquad N = P - Z$$

$$\Rightarrow \qquad -2 = -Z \text{ or } Z = 2$$

14. (c)

The closed loop transfer function of the system is

$$\frac{C(s)}{R(s)} = \frac{4s+1}{4s^2+4s+1} = \frac{1}{4} \times \frac{4s+1}{\left(s+\frac{1}{2}\right)^2}$$

For unit step input, $R(s) = \frac{1}{s}$

$$C(s) = \frac{1}{4} \times \frac{4s+1}{s\left(s+\frac{1}{2}\right)^2}$$
 ... (i)

15. (a)

 1^{st} line has slope of 12 dB/oct = 40 dB/dec, thus there is s^2 term in the numerator.

At $\omega = 0.5$ rad/sec, slope changes from +12 dB/oct to +6 dB/oct. Therefore, the term $\left(1 + \frac{s}{0.5}\right)$

should be added to the denominator.

At $\omega = 1$ rad/sec, slope changes from +6 dB/oct to 0 dB/oct, thus, a term (1 + s) should be added to the denominator.

At $\omega = 5$ rad/sec, again the slope changes from 0 dB/oct to -6 dB/oct, thus, the term $\left(1 + \frac{s}{5}\right)$

should be added to the denominator.

 \therefore The transfer function can be written as

$$T(s) = \frac{K(s^2)}{\left(1 + \frac{s}{0.5}\right)\left(1 + \frac{s}{5}\right)(1 + s)}$$

Determining the *K* value, we get,

$$32 = 20 \log K + 40 \log \omega - 20 \log \frac{\omega}{0.5} - 20 \log \frac{\omega}{5} - 20 \log \omega$$
$$32|_{\omega = 5 \text{ rad/sec}} = 20 \log K + 40 \log 5 - 20 \log \frac{5}{0.5} - 20 \log 1 - 20 \log 5$$
$$= 20 \log K + 27.95 - 20 - 0 - 13.97$$
$$32 = 20 \log K - 6.02$$
$$\log K = \frac{38.02}{20} = 1.901$$
$$K = 79.615$$

 $\therefore \text{ The overall transfer function is, } T(s) = \frac{79.6s^2}{(2s+1)(s+1)(0.2s+1)}$

16. (b)

The state equation can be written as.

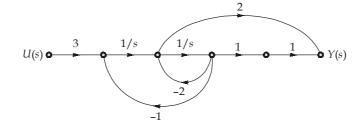
$$\dot{x}_1 = -2x_1 + x_2$$

 $\dot{x}_2 = -x_1 + 3u$

and

 $y = x_1 + 2x_2$: The signal flow graph corresponding to the state equations is

32



17. (c)

For the given system put $s = j\omega$

we get,

$$G(j\omega)H(j\omega) = \frac{32}{j\omega(j\omega + \sqrt{6})^3}$$
$$|G(j\omega)H(j\omega)| = \frac{32}{\omega(\sqrt{\omega^2 + 6})^3}$$

at $\omega = \sqrt{2}$ rad/sec,

© Copyright: MADE EASY

$$|G(\sqrt{2})H(\sqrt{2})| = \frac{32}{\sqrt{2}(\sqrt{2+6})^3} = 1$$

 $|G(j\omega)H(j\omega)|_{\omega=\sqrt{2}rac{\mathrm{rad}}{\mathrm{sec}}} = 1$ ÷

Thus, the gain cross over frequency = $\sqrt{2}$ rad/sec

Also,	$-180 = -90 - 3\tan^{-1}\frac{\omega_{pc}}{\sqrt{6}}$
	$\tan^{-1}\frac{\omega_{pc}}{\sqrt{6}} = \frac{-90}{-3}$
\Rightarrow	$\frac{\omega_{pc}}{\sqrt{6}} = \tan 30^{\circ}$
	$\omega_{pc} = \sqrt{2} \text{ rad/sec}$
	$\omega_{gc} = \omega_{pc}$ GM = 0 dB and PM = 0°

The system represents a marginally stable system.

18. (c)

$$\frac{C(s)}{R(s)} = \frac{1}{1+s\tau}$$

The response of the system,

$$C(s) = \frac{1}{1+s\tau} \times R(s)$$
$$C(s) = \frac{1}{1+s\tau} \times \frac{5}{s}$$

Taking inverse Laplace transform, we get,

 $c(t) = 5(1 - e^{-t/\tau}) u(t)$ c(t) = 4.2 at t = 0.35 msec Now, By putting these values, we get, $4.2 = 5(1 - e^{-0.35/\tau})$ $0.16 = e^{-0.35/\tau}$

$$\tau = 0.19$$
 msec

19. (d)

or

Given,
$$\frac{C(s)}{R(s)} = \frac{G(s)}{1+G(s)H(s)} = \frac{K+p}{s^2+qs+p}$$

For
$$H(s) = 1$$
, $\frac{G(s)}{1+G(s)} = \frac{K+p}{s^2+qs+p}$

or

or

$$G(s) [s^{2} + qs + p] = (K + p) + G(K + p)$$
or

$$G(s) = \frac{K + p}{s^{2} + qs + p - K - p} = \frac{K + p}{s^{2} + qs - K}$$

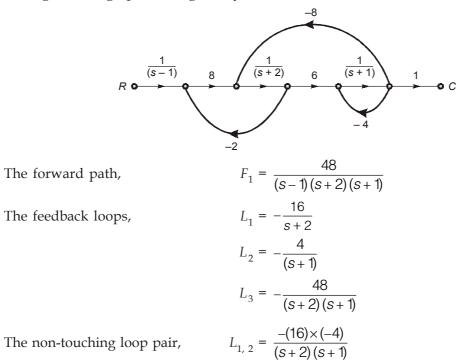
This is a type-0 system.

For a type-0 system, for unit ramp input,

$$e_{ss} = \infty$$

20. (b)

The signal flow graph of the given system can be drawn as,



:. The closed loop transfer function using Mason's gain formula is,

$$T(s) = \frac{\frac{48}{(s-1)(s+2)(s+1)}}{1+\frac{16}{s+2}+\frac{4}{s+1}+\frac{48}{(s+1)(s+2)}+\frac{64}{(s+1)(s+2)}}$$
$$= \frac{\frac{48}{(s-1)}}{(s+1)(s+2)+16(s+1)+4(s+2)+112}$$
$$T(s) = \frac{48}{(s-1)[s^2+3s+2+16s+16+4s+8+112]}$$
$$= \frac{48}{s^3+23s^2+138s-s^2-23s-138}$$
$$= \frac{48}{s^3+22s^2+115s-138}$$

 \therefore The characteristic equation is,

$$s^3 + 22s^2 + 115s - 138 = 0$$

Using Routh's criterion,

$$\begin{array}{c|cccc} s^3 & 1 & 115 \\ s^2 & 22 & -138 \\ s^1 & 121.27 & 0 \\ s^0 & -138 \end{array}$$

: There is a sign change in the first column of Routh's tabular form, the given system is unstable.

21. (b)

Using the Routh's tabular form

S ⁶	1	8	20	16
S^5	2	12	16	0
s^{5} s^{4} s^{3} s^{2}	2(s ⁴)	12(<i>s</i> ²)	16(<i>s</i> ⁰)	
<i>S</i> ³	8	24	0	
<i>S</i> ²	6	16	0	
s^1	$\frac{16}{6}$	0	0	
<i>S</i> ⁰	16			

Since there is no sign change in the first column of the Routh array, the system does not have any pole in the RHS of *s*-plane. However the row of zeros occur which gives the auxiliary equation $A(s) \Rightarrow 2s^4 + 12s^2 + 16 = 0$

$$\Rightarrow s^4 + 6s^2 + 8 = 0$$

and the roots are given by,

$$s = \pm j\sqrt{2}, \pm j2$$

Hence the system is said to be marginally stable.

22. (b)

The open loop transfer function is given as,

$$G(s) H(s) = \frac{1}{s(10s-1)}$$

Put, $s = j\omega$

$$G(j\omega) H(j\omega) = \frac{1}{j\omega(10j\omega - 1)}$$
$$|G(j\omega) H(j\omega)| = \frac{1}{\omega\sqrt{100\omega^2 + 1}}$$

$$\angle G(j\omega) \, H(j\omega) = -90^\circ - 180^\circ + \tan^{-1}(10\omega) = -270^\circ + \tan^{-1}(10\omega)$$

For $\omega = 0$,

and

$$\begin{aligned} |G(0) H(0)| &= \infty \\ \angle G(0) H(0) &= (-270^{\circ} + \tan^{-1}(10\omega)) \Big|_{\omega=0} &= -270^{\circ} \\ For \ \omega &= \infty, \\ and \\ & |G(\infty) H(\infty)| &= 0 \\ \angle G(\infty) H(\infty) &= (-270^{\circ} + \tan^{-1}(10\omega)) \Big|_{\omega=\infty} &= -180^{\circ} \end{aligned}$$

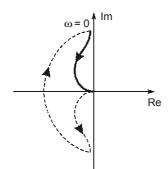
There is an open loop pole at origin. To map this pole,

$$s = re^{j\theta}\Big|_{r \to 0, \ \theta \to -\frac{\pi}{2} \text{ to } \frac{\pi}{2}}$$

$$G(s) H(s) = \frac{-1}{s(1-10s)} = \lim_{r \to 0} \frac{e^{j\pi}}{re^{j\theta}(1-10re^{j\theta})}\Big|_{\theta \to -\frac{\pi}{2} \text{ to } \frac{\pi}{2}}$$

$$= \lim_{r \to 0} \frac{1}{r}e^{j(\pi-\theta)}\Big|_{\theta \to -\frac{\pi}{2} \text{ to } \frac{\pi}{2}} = \infty e^{j\theta}\Big|_{\theta \to \frac{3\pi}{2} \text{ to } \frac{\pi}{2}}$$

Thus, the Nyquist plot can be drawn as,



23. (b)

Here,

The gain cross-over frequency $\omega_{\rm gc}$ can be calculated as,

$$|G(j\omega)|_{\omega = \omega_{gc}} = 1$$

$$G(j\omega) = \frac{32}{j\omega(j\omega + \sqrt{6})^3}$$

$$|G(j\omega)| = \frac{32}{\omega(\sqrt{\omega^2 + 6})^3} = 1$$

At $\omega = \sqrt{2}$ rad/sec $|G(j\omega)|\omega = \sqrt{2}$ rad/sec

$$\frac{32}{\sqrt{2} \times \sqrt{8} \times \sqrt{8} \times \sqrt{8}} = 1$$

Thus, $\omega = \sqrt{2}$ rad/sec is the gain cross-over frequency. Now, the phase cross-over frequency is calculated as $\angle G(j\omega) H(j\omega) = -180^{\circ}$

Here,
$$\angle G(j\omega) = -90^{\circ} - 3\tan^{-1}\frac{\omega}{\sqrt{6}}$$

or

or
$$\frac{\omega}{\sqrt{6}} = \tan 30^\circ = \frac{1}{\sqrt{3}}$$

or $\omega_{pc} = \sqrt{2} \text{ rad/sec}$

or

$$\omega_{\rm gc} = \omega_{\rm pc} = \sqrt{2} \text{ rad/sec}$$

The given system represents a marginally stable system having GM = 0 dB and $PM = 0^{\circ}$.

 $\frac{\tan^{-1}\omega}{\sqrt{6}} = 30^{\circ}$

24. (c)

Given that,

$$G(s) = \frac{25}{s(s+1)(s+5)}$$
Let the compensator,

$$G_c(s) = \frac{(s+\omega_z)}{(s+\omega_o)}$$

The open loop transfer function of the compensated system can be given as,

$$L(s) = G(s) G_{c}(s) = \frac{25(s + \omega_{z})}{s(s + 1)(s + 5)(s + \omega_{p})}$$

The velocity error constant of the compensated system will be,

$$K_{v} = \lim_{s \to 0} sL(s) = \frac{25}{5} \left(\frac{\omega_{z}}{\omega_{p}}\right) = 5 \left(\frac{\omega_{z}}{\omega_{p}}\right)$$

Given that,

$$e_{ss} = \frac{1}{K_{v}} < 0.05$$

So,

$$K_{v} > \frac{1}{0.05} = 20$$

$$5 \left(\frac{\omega_{z}}{\omega_{p}}\right) > 20$$

$$\frac{\omega_{z}}{\omega_{p}} > 4$$

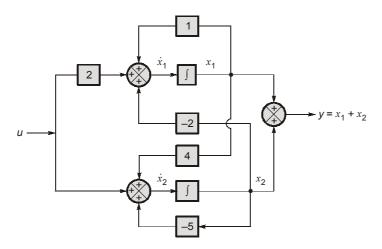
Only option (c) satisfies this.

Only option

25. (a)

So,

Redrawing the given block diagram, we get,



As per the block diagram, state equations are,

$$\dot{x}_1 = x_1 - 2x_2 + 2u$$

$$\dot{x}_2 = 4x_1 - 5x_2 + u$$
and
$$y = x_1 + x_2$$

$$\therefore \text{ State model,}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 4 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u$$

www.madeeasy.in

$$y = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Check for controllability:

$$Q_{c} = \begin{bmatrix} B : AB \end{bmatrix}$$
$$= \begin{bmatrix} 2 : (1 - 2) \\ 1 : (2 - 3) \\ 4 - 5 \end{bmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{bmatrix} 2 : (2 - 2) \\ 1 : (2 - 3) \\ 8 - 5 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$$
$$|Q_{C}| \neq 0 \implies \text{Controllable}$$

Check for observability:

$$Q_o = \begin{bmatrix} C^T : A^T C^T \end{bmatrix}$$
$$= \begin{bmatrix} 1 : & \begin{pmatrix} 1 & 4 \\ 1 : & \begin{pmatrix} -2 & -5 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 1 & -7 \end{bmatrix}$$
$$|Q_C| \neq 0 \implies \text{Observable}$$

26. (d)

As per root locus transfer function

$$G(s) H(s) = \frac{k}{(s+4)(s^2+2s+2)}$$
CE: $1 + G(s) H(s) = 0$
 $s(s^2+2s+2) + 4 (s^2+2s+2) + k = 0$
 $s^3 + 6s^2 + 10s + (8 + k) = 0$
 $s^3 - 1 = 0$
 $s^2 - 6 = 8 + k$
 $s^1 = -\frac{(8+k)-60}{6} = 0$
 $s^0 - 8 + k = 0$
Row, $s^1 = 0$
 $\Rightarrow - 8 + k = 60$
 $k = 52$
For calculation of intersection points,
 $6s^2 + (8 + k) = 0$
 $6s^2 + (60) = 0$
 $s^2 = -10$
 $s = \pm j\sqrt{10}$

Thus points of intersection are,

$$s = \pm j\omega = \pm j\sqrt{10}$$

27. (b)

The gain margin of the system can be given as,

 $GM = 20\log_{10} \frac{1}{|G(j\omega_{pc})|}$ ω_{pc} is independent of the value of K. So, $GM = C - 20\log_{10}(K)$ Where, C is a term independent of "K". For K = 2, GM = 32 dBSo, $C = 32 + 20\log_{10}(2)$ When GM = 25 dB, $25 = C - 20\log_{10}(K)$ $25 = 32 + 20\log_{10}(2) - 20\log_{10}(K)$ $20\log_{10}(K) = 7 + 20\log_{10}(2) = 13.02$ $K = 10^{(13.02/20)} = 4.48$

28. (b)

The maximum phase lead is given by,

$$\phi_m = \sin^{-1} \left(\frac{1 - \alpha}{1 + \alpha} \right)$$

For high pass filter/lead compensator,

$$\tau = R_1 C$$

$$\alpha = \frac{R_2}{R_1 + R_2} \ ; \ \alpha < 1$$

and

By putting the value of α in the above relation, we get,

$$\phi_m = \sin^{-1} \left(\frac{1 - \frac{R_2}{R_1 + R_2}}{1 + \frac{R_2}{R_1 + R_2}} \right)$$
$$= \sin^{-1} \left(\frac{R_1 + R_2 - R_2}{R_1 + R_2 + R_2} \right) = \sin^{-1} \left(\frac{R_1}{R_1 + 2R_2} \right)$$

29. (b)

The characteristic equation is given by,

$$|SI - A| = 0$$

$$\begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix} - \begin{bmatrix} 0 & 3 & 1 \\ 2 & 4 & 1 \\ -5 & -2 & -2 \end{bmatrix} = \begin{bmatrix} s & -3 & -1 \\ -2 & s - 4 & -1 \\ 5 & 2 & s + 2 \end{bmatrix}$$

:..

$$\begin{vmatrix} s & -3 & -1 \\ -2 & s - 4 & -1 \\ 5 & 2 & s + 2 \end{vmatrix} = 0$$

S[(s-4)(s+2)+2]+3[-2(s+2)+5]-1[-4-5(s-4)] = 0

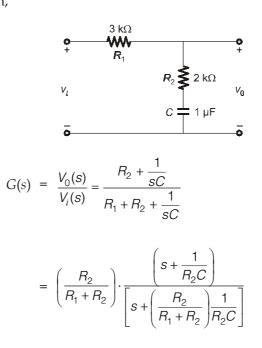
 $\Rightarrow s[s^{2} - 2s - 8 + 2] + 3[-2s - 4 + 5] - [-4 - 5s + 20] = 0$ $\Rightarrow s[s^{2} - 2s - 6] + 3[-2s + 1] - [-5s + 16] = 0$ $\Rightarrow s^{3} - 2s^{2} - 6s - 6s + 3 + 5s - 16 = 0$ $\Rightarrow s^{3} - 2s^{2} - 7s - 13 = 0$ Using Routh's tabular form,

$$\begin{array}{c|cccc} s^{3} & 1 & -7 \\ s^{2} & -2 & -13 \\ s^{1} & -13.5 & 0 \\ s^{0} & -13 & 0 \end{array}$$

Here, the total number of sign changes in the first column of Routh array is 1, therefore only one pole lie in the RHS of *s*-plane.

30. (a)

For the circuit shown,



$$\alpha = \frac{R_1 + R_2}{R_2} = \frac{3 \,\mathrm{k}\Omega + 2 \,\mathrm{k}\Omega}{2 \,\mathrm{k}\Omega} = \frac{5}{2} = 2.50$$

:.