S.No.: 02 SP1_ME_S_250519

Industrial Engineering

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

MECHANICAL ENGINEERING

Industrial Engineering

Date of Test: 25/05/2019

——————————————————————————————————————									
1.	(c)	7.	(a)	13.	(c)	19.	(b)	25.	(c)
2.	(d)	8.	(c)	14.	(a)	20.	(a)	26.	(c)
3.	(b)	9.	(a)	15.	(b)	21.	(c)	27.	(c)
4.	(a)	10.	(b)	16.	(b)	22.	(b)	28.	(a)
5.	(d)	11.	(a)	17.	(d)	23.	(c)	29.	(b)
6.	(c)	12.	(d)	18.	(d)	24.	(b)	30.	(b)

DETAILED EXPLANATIONS

1. (c)

2. (d)

Processing time for one job (one unit) = 6 + 11 + 13 + 4 + 16 = 50 seconds Total available working time in a week = $7 \times 3600 \times 5 = 126,000$ seconds

No. of units produced on single workstation = $\frac{126,000}{50}$ = 2520 units Minimum no. of workstations required = $\frac{9000}{2520}$ = 3.6 ≈ 4

5. (d)

For 6σ level \rightarrow Defects per million is limited to 3.4

We have 100 lakhs component, which means 10 million.

For *P*, defects per million is $2.8 \leftarrow$ falls in $6 - \sigma$ level confromance

For Q, defects per million is 4.0

For R, defects per million is 4.9

6. (c)

As per SPT rule, optional sequence is : 2 - 3 - 1

Completion times of the jobs are: 8, 19 and 39 minutes respectively

Mean flow time =
$$\frac{8+19+39}{3}$$
 = 22 minutes

8. (c)

Balance delay is the measure of line inefficiency due to imbalances in station times

$$d = \frac{nT_C - T_{WC}}{nT_C}$$

$$= \frac{5 \times 10 - (10 + 8 + 6 + 9 + 10)}{5 \times 10} = \frac{50 - 43}{50} = \frac{7}{50} = 0.14 \text{ or } 14\%$$

10. (b)

EOQ =
$$\sqrt{\frac{2AD}{H}}$$

D = $\frac{(EOQ)^2 \times H}{2A} = \frac{(385)^2 \times 0.30}{2 \times 6} = 3705.625 \approx 3706 \text{ units}$

11. (a)

Option (a) pertains to loading and scheduling.

14. (a)

Standard time = Set up time + time per piece
$$\times$$
 nos. of pieces produced
= $35 + 8 \times 50 = 435$ minutes = 7 hours and 15 minutes

Efficiency of operator =
$$\frac{\text{Standard time} \times 100}{\text{Actual time}} = \frac{435 \times 100}{(6 \times 60 + 30)} = \frac{435}{390} \times 100 = 111.5\%$$

15. (b)

Arrival rate,
$$\lambda = \frac{10}{8}$$
 per hours
Service rate, $\mu = \frac{60}{30} = 2$ per hour

Probability that the service is free =
$$1 - \frac{\lambda}{\mu} = 1 - \frac{10}{8 \times 2} = \frac{6}{16}$$

Expected idle time per day =
$$\frac{6 \times 18}{16}$$
 = 3 hours

Length in the system,
$$L_S = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{10/8}{2 - (10/8)} = 1.67 \text{ sets} \approx 2 \text{ sets}$$

16. (b)

 $\lambda = 12$ trucks per hour, $\mu = 20$ trucks per hour

The probability that a truck has to wait is given by the probability that the service is busy.

Probability that service is busy
$$= \frac{\lambda}{\mu} = \frac{12}{20} = 0.6$$

Expected waiting time for a truck =
$$\frac{\lambda}{\mu(\mu - \lambda)} = \frac{12}{20(20 - 12)} = \frac{3}{40}$$
 hours or 4.5 minutes

The number of trucks arriving in a day (24 hours) is $24 \times 12 = 288$

As given, 50% belong tot he contractor, i.e. 144 trucks.

Each truck wait for an average of 4.5 minutes

Total waiting time for the contractor's truck = $\frac{144 \times 4.5}{60}$ = 10.8 hours

17. (d)

$$\lambda$$
 = arrival rate = 5 jobs/minute

$$\mu$$
 = service rate = 8 jobs/minute

The mean steady state numbers of jobs in the system,

$$L_S = \frac{\lambda}{\mu - \lambda} = \frac{5}{8 - 5} = \frac{5}{3} = 1.67$$

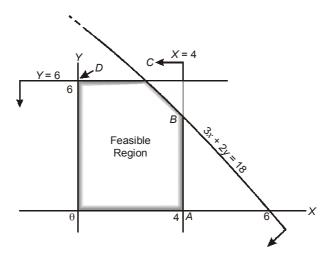
19. (b)

Selling price,
$$S = ₹16$$

Break even point (units) =
$$\frac{FC}{S-V} = \frac{1,20,000}{16-12} = 30,000$$
 units

BEP as a percentage of capacity =
$$\frac{\text{Break-evensales}}{\text{Capacity sales}} = \frac{30,000}{50,000} = 60\%$$

20. (a)


$$F_{t+1} = F_t + \alpha \left(D_{\text{April} \, 2018} - F_{\text{April} \, 2018} \right)$$

$$= 850 + 0.4 \, (900 - 850) = 850 + 0.4 \times 50 = 870 \, \text{units}$$

$$F_{\text{June} \, 2018} = 870 + \infty \, (1030 - 870)$$

$$= 870 + 0.4 \times 160 = 934 \, \text{units}$$

22. (b)

$$A \equiv (4,0)$$

$$B \equiv (4,3)$$

$$C \equiv (2,6)$$

$$D \equiv (0,6)$$

$$Z_A = 6 \times 4 + 10 \times 0 = 24$$

$$Z_B = 6 \times 4 + 10 \times 3 = 54$$

$$Z_C = 6 \times 2 + 10 \times 6 = 72$$

$$Z_D = 6 \times 0 + 10 \times 6 = 60$$

$$Z_C = Z_{max} = 72$$

23. (c)

Product	Release Time	Processing Time	Start Time	Finish Time	Due Date	Tardiness
R	0	2	1	2	15	0
Р	0	3	2	5	10	0
S	1	5	5	10	11	0
Т	1	1	10	11	13	0
Q	2	4	11	15	9	6

Total tardiness = 6

24. (b)

Supply rate,
$$R = \frac{12000}{12} = 1000 \text{ units/month}$$

Holding cost, $C_1 = ₹0.20$ per unit per month

Ordering cost, $C_3 = 350$ per order

$$EOQ = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2 \times 350 \times 1000}{0.2}} = 1870 \text{ units / order}$$

25. (c)

Holding cost, $C_1 = ₹0.08$ per unit per day

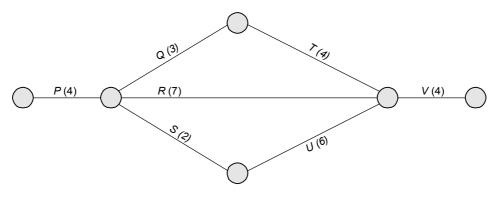
Ordering cost, $C_3 = 3400$ per order

Supply rate, R = 100 units

EOQ,
$$q_0 = \sqrt{\frac{2C_3R}{C_1}} = \sqrt{\frac{2 \times 400 \times 100}{0.08}} = 1,000 \text{ units}$$

Length of cycle, to =
$$\frac{1000}{100}$$
 = 10 days

As the lead time is 13 days and cycle length is 10 days, reordering should occur when the level of inventory is sufficient to satisfy the demand for 13 - 10 = 3 days


Reorder point = $100 \times 3 = 300$ units.

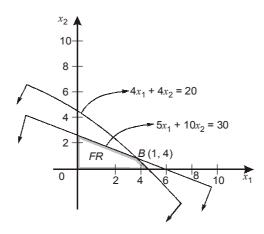
26. (c)

15)	20)	60	700	700
5 1000	40)	20	200	1200
30)	10) 1000	50	100	1100
1000	1000		1000	3000 3000

Total cost =
$$5 \times 1000 + 10 \times 1000 + 60 \times 700 + 20 \times 200 + 50 \times 100$$

= $5000 + 10000 + 42000 + 4000 + 5000$
= ₹66,000

27. (c)


For path P - R - V, project duration = 15 days

For path P - Q - T - V, project duration = 4 + 3 + 4 + 4 = 15 days

For path P - S - U - V, project duration = 4 + 2 + 6 + 4 = 16 days

29. (b)

$$0 \equiv (0, 0), A \equiv (0, 3)$$

$$B \equiv (1, 4), C \equiv (5, 0)$$

$$Z_A = 6 \times 0 - 8 \times 3 = -24$$

$$Z_B = 6 \times 1 - 8 \times 4 = -26$$

$$Z_C = 6 \times 5 - 8 \times 0 = 30$$

$$Z_{\min} = 24 \text{ at } (0,3)$$

30. (b)

Step I: (Reducing the matrix by subtracting the minimum element of each row from all the elements of that row)

2	0	1	4
0	1	4	2
3	2	0	1
1	3	0	2

Step II:

$$J_1 \Rightarrow M_2$$
$$J_2 \Rightarrow M_1$$

$$\begin{array}{c}
J_2 \Rightarrow IVI_1 \\
J_3 \Rightarrow M_4 \\
J_4 \Rightarrow M_3
\end{array}$$