S.No.: 02 **CH1_EE_C+D_210519**

Digital Electronics

India's Best Institute for IES, GATE & PSUs

Delhi | Noida | Bhopal | Hyderabad | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST 2019-2020

ELECTRICAL ENGINEERING

Digital Electronics

Date of Test: 21/05/2019

			— Answer Key —		
1.	(b)	7. (a)	13. (b)	19. (d)	25. (a)
2.	(a)	8. (b)	14. (a)	20. (a)	26. (c)
3.	(a)	9. (b)	15. (b,d)	21. (a)	27. (b)
4.	(a)	10. (a)	16. (a)	22. (a)	28. (a)
5.	(c)	11. (b)	17. (c)	23. (a)	29. (a)
6.	(d)	12. (a)	18. (a)	24. (b)	30. (*)

DETAILED EXPLANATIONS

1. (b)

$$0.514 \times 8 = 4.112$$

 $0.112 \times 8 = 0.896$
 $0.896 \times 8 = 7.168$
 $0.168 \times 8 = 1.344$
 $0.344 \times 8 = 2.752$
 $(0.514)_{10} = (0.40712)_{8}$

2. (a)

:.

Since both PRESET & CLEAR are active low inputs, it will not affect to output status for a given condition. For J = 0, K = 0 input condition output of a JK FF holds. The previous value $Q^+ = Q$

3.

For successive approximation type ADC, conversion time remains the same for any analogue input.

$$t_{\text{conv}} = nT$$

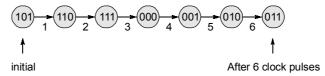
$$T = \text{Clock period}$$

$$n = \text{Number of bit}$$

$$T = \frac{1}{1 \times 10^6} = 1 \,\mu\text{s}$$

$$t_{\text{con}} = 12 \times 1 = 12 \,\mu\text{s}$$

5. (c)

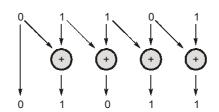

:.

$$\frac{64}{2} = 32$$
, $\frac{32}{2} = 16$, $\frac{16}{2} = 8$
 $\frac{8}{2} = 4$, $\frac{4}{2} = 2$, $\frac{2}{2} = 1$

$$\therefore$$
 Total = 32 + 16 + 8 + 4 + 2 + 1 = 63

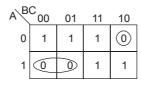
6. (d)

MOD-8 ripple up counter counts from 000 to 111



7. (a)

Number of chips required =
$$\frac{\text{Required size of RAM}}{\text{Available size of RAM}} = \frac{64K \times 16}{16K \times 8} = 4 \times 2 = 8$$


9. (b)

Binary to gray code conversion

10. (a)

k-map simplification

POS expression is

$$F = (\overline{A} + B) \cdot (A + \overline{B} + C)$$

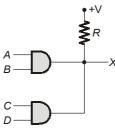
11. (b)

Octal number is obtained by 7's complement of 5264

$$7777 - 5264 = (2513)_8$$

Binary equivalent of $(2513)_8 = (010\ 101001\ 011)_2$

Hexadecimal equivalent of $(010\ 101001\ 011)_2 = (54B)_{16}$


12. (a)

Paralleling of two NAND gate at the input leads to a wire AND

 \therefore The logic expression at point x.

Hence.

$$x = \overline{AB} \cdot \overline{CD}$$

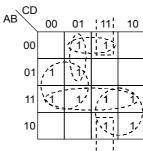
 $y = \overline{X} = \overline{\overline{AB} \cdot \overline{CD}} = AB + CD$

13. (b)

Let n number of flip flop cascaded each having propagation delay of t_{pd} . Frequency of operation

$$\frac{1}{nt_{pd}} \ge 10 \, \text{MHz}$$

:.


$$n \le \frac{1}{t_{pd} \times 10 \text{ MHz}} \le \frac{1}{12 \times 10^{-9} \times 10^7} \le \frac{100}{12}$$

n = 3

For n = 8 MOD number of counter $2^8 = 256$

14. (a)

Drawing k-map

From above k-map it is clear the minterms 4, 10 are grouped only once. Hence the essential prime implicants are $B\bar{C}$, AC.

16. (a)

From figure,

$$X = \overline{A + \overline{B}} = \overline{A}B$$

$$A = A$$

$$B = A$$

$$A = A$$

$$A$$

Similarly,

$$y = \overline{X} \cdot \overline{A} + B = X + (\overline{A} + B) = \overline{A}B + A \cdot \overline{B}$$
$$= A \oplus B$$

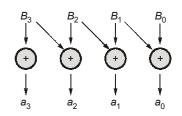
∴ X represent BORROW & y represents DIFFERENCE output.

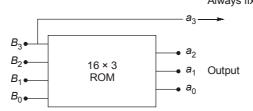
17. (c)

Step size =
$$\frac{\text{Full scale output}}{\text{Number of steps}} = \frac{5V}{2^8 - 1} = 19.607 \text{ mV}$$

For a digital input (10000010) = (130_{10}) analogue output $130 \times 19.607 = 2.549 \text{ V}$

Error =
$$\pm \frac{0.5 \times 5}{100} = 0.025$$


Expected range of output 2.524 - 2.574 V


18. (a)

:.

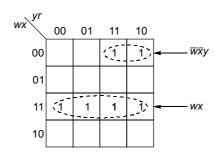
:.

Number of input = 4 $a_3 = B_3$ $a_2 = B_2 \oplus B_3$ $a_1 = B_2 \oplus B_1$ $a_0 = B_1 \oplus B_0$

Size of ROM requires $2^4 \times 3 = 16 \times 3$

19. (d)

Initial state to be 1000.


CLK	Α	В	С	D	X
X	1	0	0	0	0
1	0	1	0	0	1
2	1	0	1	0	1
3	1	1	0	1	0
4	0	1	1	0	0
5	0	0	1	1	0
6	0	0	0	1	1
7	1	0	0	0	0

Hence after 7 clock pulses SIPO shift register comes back to initial state.

MADE EASY India's Best Institute for IES, GATE & PSUs

20. (a)

k-map simplification

21. (a)

MOD number of BCD counter = 10

MOD number of *n* bit Johnson counter = 2n

MOD number of n bit ring counter = n

 \therefore Hence MOD number of given counter arrangement = $10 \times 6 \times 2 = 120$

$$f_0 = \frac{f_{clk}}{120}$$

$$f_{ck} = f_0 \times 120 = 24 \text{ kHz}$$

22. (a)

Output y will be high only it

 $J_2 = X = 1$ and C has a low-to-HIGH transition

X will be high only if

A = 1 and B has a LOW-to-HIGH transition.

From above two conditions, it is clear that output y will go high for the following sequence

A - B - C

Analysis:

A = 1 and B goes high, A rising edge of B will trigger flip-flop

$$X = 1 [J_1 = 1; K_1 = 0]$$

Now, C goes high. A rising edge of C will trigger flip-flop 2

$$Y = 1 [J_2 = X = 1; K_2 = 0]$$

23. (a)

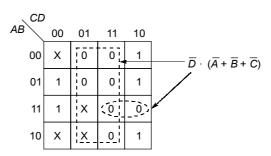
X-Y = X + 2s complement of Y.

2's complement of
$$Y = 1$$
's complement + 1

$$= 01111100 + 1 = 01111101$$

$$X-Y = 1010100$$

0111101


= **1**0010001

Discard carry, X - Y = 0010001

24. (b)

Drawing k-map

POS form is suitable for NOR gate implementation

$$f = \overline{D}(\overline{A} + \overline{B} + \overline{C}) = \overline{\overline{D}(\overline{A} + \overline{B} + \overline{C})} = \overline{D + \overline{A} + \overline{B} + \overline{C}}$$

NOT required 1 NOR gate.

.. Total 5 NOR gates required.

25. (a)

From figure

$$y = \bar{Q}A + Q\bar{B}$$

Q - Present state

$$Q^+ = D = y = \overline{Q}A + Q\overline{B}$$

 $Q^+ = Next state$

For A = 1, B = 1

$$Q^+ = \overline{Q}, 1 + Q, 0 = \overline{Q}$$

For A = 1, B = 0

$$Q^+ = \bar{Q}, 1 + Q, 1 = 1$$

26. (c)

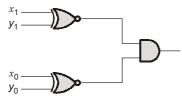
Select line	I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7
Select line ABC	000	001	010	011	100	101	110	111
D	0	(2)	4	6	(8)	10	12	14)
D	① D	3	5	7	9	11)	13	15
	D	D	0	D	1	D	0	1

27. (b)

Analysis of the circuit,

$$J = \overline{Q} \oplus x, \quad k = \overline{J}$$

X	Q	J	K	Q+
0	0	1	0	1
0	1	0	1	0
1	0	0	1	0
1	1	1	0	1


$$\therefore \qquad Q(t+1) = x \odot Q(t)$$

INADE EASY India's Best Institute for IES, GATE & PSUs

28. (a)

Two numbers will be equal if $y_1 = x_1$ and $y_0 = x_0$ Ex-NOR logic gate outputs 1(HIGH) for the same input.

.. Above condition will be implement as

29. (a)

8 bit binary parallel adder can be implemented by 7FA + 1HA

FA = Full adder

HA = Half adder

Half adder

HA requires 1 Ex-OR & 1 AND gate.

1 HA costs 2 + 1 = 3 units

Full adder requires 2HA & 1 OR gate

.. We total require, 15HA & 7OR gate

 \therefore Total cost = 15 × cost of HA + 7 × cost of OR gate

 $= 15 \times 3 + 7 \times 1$

= 52 units

30. (*)

Question data insufficient.