- CLASS	TES	5Т —			S.N	lo. : 01	IG_CE_C+	+D_260422
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna								
Web	Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612							
ENG	IN	EEI	RIN	G F	IYDF	RO	LOC	GY
		CIV	IL EN	IGIN	EERIN	١G		
		Date	e of Tes	st:26	/04/202	22		
ANSWER KEY	>							
1. (a)	7.	(c)	13.	(c)	19.	(d)	25.	(d)
2. (c)	8.	(c)	14.	(a)	20.	(b)	26.	(c)
3. (a)	9.	(d)	15.	(c)	21.	(a)	27.	(d)
4. (a)	10.	(b)	16.	(d)	22.	(a)	28.	(a)
5. (a)	11.	(c)	17.	(b)	23.	(c)	29.	(c)
6. (a)	12.	(a)	18.	(c)	24.	(c)	30.	(b)

Detailed Explanations

1. (a)

The rising limb of a hydrograph is also known as concentration curve and it represents the increase in discharge due to the gradual building up of storage in channels and over the catchment surface.

4. (a)


Since variation is more than 10%,

$$P_x = \frac{105}{3} \left[\frac{156}{155} + \frac{140}{150} + \frac{104}{120} \right]$$

= 98.2 cm

5. (a)

$$Q_{\text{equilibrium}} = 2.78 \frac{A}{T}$$

= $2.78 \times 360 \times \frac{1}{4} \simeq 250 \text{ cumecs}$

6. (a)

7. (c)

The limiting case of a UH of zero duration is known as IUH (Instantaneous Unit Hydrograph). The ordinate of one IUH at any time 't' is the slope of S-curve of intensity 1 cm/hr.

8. (c)

- (ii) Soluble salts when dissolved in water leads to decrement in rate of evaporation.
- (iii) A deep water body/lake may store radiation energy received in summer and release it in winter causing less evaporation in summer and more evaporation in winter compared to a shallow lake exposed to a similar situation.

10. (b)

Drizzle is a fine sprinkle of numerous water droplets of size less than 0.5 mm and intensity less then 1 mm/hr.

11. (c)

Peak of DRH =
$$135 - 10 = 125 \text{ m}^3/\text{s}$$

P = 54 mm , $\phi = 4 \text{ mm/hr}$
∴ $n = P - \phi \times t = 54 - 4 \times 1 = 50 \text{ mm} = 5 \text{ cm}$
∴ Peak of 1 hr. UH = $\frac{125}{5} = 25 \text{ m}^3/\text{s}$

12. (a)

For DRH,

$$n = 2 + 3 = 5 \text{ cm}$$

$$(\Sigma O) = (1 + 7 + 26 + 37 + 27 + 13 + 1) - 7 = 105$$

$$n = \frac{0.36 \Sigma Ot}{A}$$

$$\Rightarrow \qquad A = \frac{0.36 \times 105 \times 1}{5} = 7.56 \text{ km}^2$$

13. (c)

 \Rightarrow

$$P = 5 \times 2 = 10 \text{ cm}$$

= 10 \times 10⁻² \times 100 \times 10⁴ = 10⁵ m³
R = 1 m³/s \times 10 \times 60 \times 60 = 36000 m³
Runoff coefficient = $\frac{R}{P} = \frac{36000}{10^5} = 0.36$

14. (a)

:.

Time (hr)	4- <i>h</i> UH (m ³ /s)	S-curve addition	S-curve	Offset S-curve	Δy	$6\text{-}h \text{ UH} = (\Delta y \times 4/6)$
0	0	-	0	-	0	0
2	9	- /	9	-	9	6
4	20	0	. 20	-	20	13.33
6	35	9	44	0	44	29.33
8	43	20	63	9	54	36
10	22	44	66	20	46	30.67
		63		44		
		66		69		
				66		

15. (c)

(i) Mean rainfall,
$$(\overline{P}) = \frac{\Sigma P}{n} = \frac{800 + 620 + 400 + 560}{4} = 595 \text{ mm}$$

(ii) Standard deviation, $\sigma = \sqrt{\frac{(P - \overline{P})^2}{n - 1}} = 165.23$
(iii) Coefficient of variation, $c_v = \frac{100 \sigma}{\overline{P}} = \frac{100 \times 166.93}{595} = 27.77$
(iv) Optimum number of rain gauges, $(N) = \left(\frac{C_v}{\epsilon}\right)^2 = \left(\frac{28.29}{10}\right)^2 \Rightarrow 7.7113 \approx 8 \text{Nos}$
(v) Additional gauges required to be installed
 $= 8 - \text{Existing 4 gauges} = 8 - 4 = 4$

16. (d)

Peak flow = $270 \text{ m}^3/\text{s}$ Base flow = $30 \text{ m}^3/\text{s}$ Peak flow of resulting DRN = $270 - 30 = 240 \text{ m}^3/\text{s}$ $P = 4, \phi = 0.5 \text{ cm/hr}, t = 4\text{hr}$ Given that, $P_{-}R$

$$\phi = \frac{P - R}{t}$$

$$0.5 = \frac{4 - R}{4}$$

$$R = 2 \text{ cm}$$

India's Beet Institute for IES, GATE & PSUs

We know that,

$$\frac{UH}{DRN} = \frac{1}{R}$$

$$\frac{UH}{240} = \frac{1}{2}$$

$$UH = 120 \text{ m}^3/\text{s}$$

17. (b)

Loss = Rainfall - Runoff =
$$\frac{0.8}{100} \times 6 - \frac{256000}{8.6 \times 10^6} = 0.01823 \text{ m} = 1.823 \text{ cm}$$

Rate of loss = $\frac{1.823}{6} = 0.304 \,\text{cm/hr}$

19. (d)

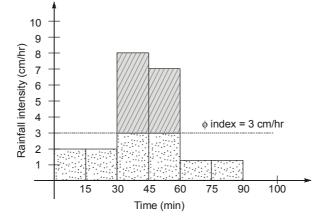
Given return period, T = 50 years

$$P = \frac{1}{T} = \frac{1}{50}$$
$$q = 1 - \frac{1}{50}$$

And

Here binominal distribution is followed.

The binomial distribution can be used to find the probability of occurrence of the event occurring r times in n successive years. Thus


Here,

$$P_{r, n} = n_{C_r} P_r q^{n-r}$$

$$n = 16, r = 2$$

$$P = {}^{16} C_2 \left(\frac{1}{50}\right)^2 \left(\frac{49}{50}\right)^{14}$$

20. (b)

Hatched portion shows the total runoff and dotted portion shows the total infiltration.

$$\therefore \qquad \text{Total runoff} = (8-3) \times \frac{15}{60} + (7-3) \times \frac{15}{60} = \left[(8-3) + (7-3) \right] \times \frac{15}{60} = 2.25 \text{ cm}$$

$$\text{Total precipitation} = 2 \times \frac{15}{60} + 2 \times \frac{15}{60} + 8 \times \frac{15}{60} + 7 \times \frac{15}{60} + 1.25 \times \frac{15}{60} + 1.25 \times \frac{15}{60}$$

$$= (2+2+8+7+1.25+1.25) \times \frac{15}{60} = 5.375 \text{ cm}$$

© Copyright: **MADE EASY**

22.

24.

Windex =
$$\frac{\text{Total precipitation} - \text{Runoff}}{\text{Duration of rainfall in hr}} = \frac{5.375 - 2.25}{90 / 60}$$

= 2.083 cm/hr $\simeq 2.08$ cm/hr
(a)
Given: $N = 8, \sigma = 8 \text{ cm}, \epsilon = 10\%$
We know that $N = \left(\frac{C_v}{\epsilon}\right)^2$
 $B = \left(\frac{C_v}{\epsilon}\right)^2$
 $C_v = 10 \times \sqrt{8} = 10 \times 2\sqrt{2}$
 $C_v = 10 \times \sqrt{8} = 10 \times 2\sqrt{2}$
 $C_v = \frac{\sigma}{\mu} \times 100$
 $\mu = \frac{\sigma}{C_v} \times 100$
 $\mu = \frac{8}{10 \times 2\sqrt{2}} \times 100 = \frac{40}{\sqrt{2}}$
 $\mu = 20\sqrt{2}$
(c)
Let the peak of the UH be Qp.
The UH can be shown as

Area of DRH gives the volume of rainfall,

25. (d)

Total rainfall =
$$0.5 + 1.8 + 2.9 = 5.2$$
 cm
Infiltration = $5.2 - 2 = 3.2$ cm
Excess rainfall duration, $t_e = 2 \times 3 = 6$ hrs.
 ϕ -index = $\frac{3.2}{6} = 0.533$ cm/hr
This value being more than 0.5 cm/hr,

India's Beet Institute for IES, GATE & PSUs

The excess rainfall duration will reduce by 2 hrs.

:.
$$t_{e} = 4 \text{ hrs.}$$

Infiltration = $(1.8 + 2.9) - 2 = 2.7 \text{ cm}$
 ϕ -index = $\frac{2.7}{4} = 0.675 \text{ cm/hr}$

26. (c)

$$\overline{x} = \frac{1}{n} \sum n_i = \frac{80 + 90 + 100 + 60 + 70}{5} = 80 \text{ cm}$$

The standard deviation of the rainfall is given by

$$\sigma = \sqrt{\frac{(x-\overline{x})^2}{n-1}}$$

$$\sigma = 15.81$$

$$C_V = \frac{\sigma}{\overline{x}} \times 100 = 19.76$$

$$N = \left(\frac{C_V}{\epsilon}\right)^2 = \left(\frac{19.76}{6}\right)^2 = 10.85 \simeq 11$$

Thus, additional number of rainguages = 11 - 5 = 6

27. (d)

 \Rightarrow

Time base of both the unit hydrographs is same. Let it be t.

$$\therefore \quad \frac{1}{2} \times 30 \times t \times \frac{1}{235} = \frac{1}{2} \times 90 \times t \times \frac{1}{A_2}$$
$$\Rightarrow \qquad A_2 = 235 \times 3$$
$$\Rightarrow \qquad A_2 = 705 \text{ km}^2$$

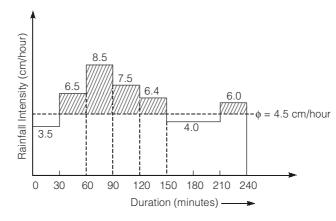
28. (a)

The calculations are tabulated below:

1		1	
Time (hr)	FH (m ³ /s)	Base Flow (m ³ /s)	DRH (m ³ /s)
Col. (1)	Col. (2)	Col. (3)	Col. (4)
0	5	5	0
12	15	5	10
24	40	5	35
36	80	5	75
48	60	5	55
60	50	5	45
72	25	5	20
84	15	5	10
96	5	5	0
			ΣO = 250

Base flow = $5 \text{ m}^3/\text{sec}$

Now, direct runoff depth,
$$DRD = \frac{0.36 \times \Sigma O \times t}{4}$$


$$\Sigma O = 250 \text{ m}^3/\text{s}; t = 12 \text{ hr}; A = 450 \text{ km}^2$$

$$DRD = \frac{0.36 \times 250 \times 12}{450} = 2.4 \text{ cm}$$

where

:.

29. (c)

Rainfall excess is shown by hatched area. Total rainfall

$$P = (3.5 + 6.5 + 8.5 + 7.5 + 6.4 + 4.0 + 4.0 + 6.0) \times \frac{30}{60} = 23.2 \text{ cm}$$

Total rainfall excess

$$R = \left[(6.5 - 4.5) + (8.5 - 4.5) + (7.5 - 4.5) + (6.4 - 4.5) + (6.0 - 4.5) \right] \times \frac{30}{60}$$
$$= (2 + 4 + 3 + 1.9 + 1.5) \times \frac{1}{2} = 6.2 \text{ cm}$$

W-index =
$$\frac{P-R}{t} = \frac{23.2 - 6.2}{4} = 4.25$$
 cm/hour

30. (b)

Given that rainfall intensity = 1 cm/hr

For S-curve rainfall intensity, $\frac{1}{D} = 1$ \Rightarrow D = 1 hrWe, $Q_e = \frac{2.778A}{D}$ $Q_e = \text{Equilibrium discharge}$ At $t = \infty, \theta = Q_e$ $Q = 2 - (1 + t)e^{-3t}$ $t = \infty$ $Q = 2 - (3 + e)e^{-3 \times \infty}$ $Q_e = 2 \text{ m}^3/\text{s}$ $2 = 2.778\frac{A}{1}$ $A = 0.7199 \text{ km}^2$ $A = 71.99 \text{ ha} \approx 72 \text{ ha}$

###