	.CAS:	5 TE	ST –			S.N	o.: 01	IG_CE_A+I	B_170422
India's Best Institute for IES, GATE & PSUs									
	Delhi Bl	hopal H	yderabad	Jaipur L	ucknow	Pune Bhub	aneswar	Kolkata F	Patna
RAILWAY ENGINEERING									
			CIVI	IL EN	JGIN	EERIN	١G		
	_				JGIN st · 17				
	_		Date	e of Te	JGII∖ st:17/	EERIN /04/202	NG 22		
AN	 Swer k	(EY >	Date	IL EN	JGIN st:17/	EERIN /04/202	NG 22		
AN 1.	SWER K	<mark>ЕҮ ></mark> 6	(c)	e of Te	(d)	EERIN /04/202 16.	(c)		(b)
AN 1. 2.	SWER K (c) (c)	ΈΥ > 6 7.	CIV Dat (c) (d)	IL EN e of Te 11. 12.	(d) (d)	EERIN /04/202 16. 17.	(c) (a)	21.	(b) (a)
AN 1. 2. 3.	SWER K (c) (c) (c)	ÆY → 6 7. 8.	(c) (d) (a)	IL EN e of Te 11. 12. 13.	JGIN st:17/ (d) (d) (c)	EERIN /04/202 16. 17. 18.	(c) (c) (a)	 21. 22 23.	(b) (a) (a)
AN 1. 2. 3. 4.	SWER K (c) (c) (c) (b)	(EY) 6 7. 8. 9.	(c) (d) (a) (d)	L EN e of Te 11. 12. 13. 14.	JGIN st:17/ (d) (d) (c) (c)	EERIN /04/202 16. 17. 18. 19.	(c) (a) (c) (c)	 21. 22 23. 24.	(b) (a) (a) (b)

DETAILED EXPLANATIONS

1. (c)

The types of railway yards are:

- (i) **Goods yard :** The main function is to provide facilities for receiving, loading, unloading and delivery of goods and the movement of goods vehicle.
- (ii) Marshalling yard : The main function is breakup, reform and despatch of trains onwards. i.e., reception, sorting and departure.
- (iii) Locomotive yard : Locomotive yard for housing locomotive. All the facilities for oil filing, watering repairing, cleaning, etc. are provided.
- (iv) Passenger bogie yard : Passenger bogie yard provide facilities for safe movement of passenger and vehicles for the passengers.
- 4. (b)

Let	W = Weight of the train
and	x = Required gradient

Resistance due to ruling gradient = $\frac{1}{200}W$

Resistance due to required gradient = $\frac{1}{x}W$

Resistance due to 2 degree curve = $0.0004 \times 2 \times W$ So, according to question

$$\frac{W}{x} + 0.0004 \times 2 \times W = \frac{1}{200}W$$
$$\frac{1}{x} = \frac{21}{5000}$$
$$\frac{1}{x} = \frac{1}{238.1} \simeq \frac{1}{238}$$

5. (c)

 \Rightarrow

 \Rightarrow

Degree of curvature of curve,

 $D = 5^{\circ}$ For a BG track, G = 1.676 m V = 80 km/h

Radius of curvature, $R = \frac{1718.9}{D} = \frac{1718.9}{5} = 343.78 \text{ m}$

Superelevation,
$$e = \frac{GV^2}{127R} = \frac{1.676 \times 80^2}{127 \times 343.78} = 0.2456 \text{ m} = 24.56 \text{ cm}$$

But equilibrium cant in a BG track should not be greater than 16.5 cm.

6 (c)

Given: Versine = V = AB = 2 cm, a = 11.8 m

 $AB \times (2AO - AB) = CB \times BD$

(Property of triangle)

$$V \times (2R - V) = \frac{a}{2} \times \frac{a}{2}$$

$$2RV - V^2 = \frac{a^2}{4}$$

$$2RV = \frac{a^2}{4}$$

$$V = \frac{a^2}{8R}$$

$$R = \frac{(11.8)^2}{8 \times 0.02} = 870.25 \text{ m}$$

8. (a)

 $L = 7.2 \times e = 7.2 \times 15 = 108.0 \text{ m}$ $L = 0.073 \text{ (CD)} \times V_{max} = 0.073 \times 7.5 \times 90 = 49.28 \text{ m}$ $L = 0.073 eV_{max} = 0.073 \times 15 \times 90 = 98.55 \text{ m}$ Max

So, length of transition curve = 108 m

11. (d)

Curve lead =
$$2 \text{ GN} = 2 \times 1.676 \times 8.5 = 28.5 \text{ m}$$

13. (c)

Track modulus is an index for stiffness of track. It depends upon the gauge, the type of rails, the type and density of sleepers, the type and section of ballast and subgrade.

N		B I	DE	Ξ	AS	Ч
12.15	India's	Beat	Institute	for IES,	GATE &	PSUs

14. (c)

Flangeway clearance is the distance between adjacent faces of the stock rail (or running rail) and the check (or guard) rails. Heel divergence is the distance between the running faces of the stock rail and gauge face of the tongue rail when measured at the heel of the switch.

17. (a)

Corrugations occur:

- (i) Where the ballast consists of broken bricks
- (ii) Where brakes are applied to trains for stopping them
- (iii) Where trains start
- (iv) In electrified sections
- (v) In long tunnels

21. (b)

Grade compensation for BG curve = 0.04% per degree curve

Total grade compensation = $0.04 \times 4 = 0.16\%$

Gradient provided = 0.5% - 0.16% = 0.34%

22 (a)

Length of track, $l = (D-G) N + G (4N - \sqrt{1+N^2})$ Given N = 10; D = 5 m, G = 1.676 m $l = (5 - 1.676) \times 10 + 1.676 (4 \times 10 - \sqrt{1+10^2}) = 83.44$ m The length of straight distance = l - 4GN $= 83.44 - (4 \times 1.676 \times 10) = 16.4$ m

23. (a)

Length of each rail, $n = \frac{26}{2} = 13 \text{ m}$ Sleeper density = n + 6 = 13 + 6 = 19Total number of rails required $= \frac{1690}{13} = 130$ \therefore Total number of sleepers = Number of rails \times Sleeper density $= 130 \times 19 = 2470$

24. (b)

4 - 2 - 1 - 3Starter signal – Warner signal – Outer signal Home signal

25. (c)

$$R_{st} = 0.15 W_L + 0.005 W_W$$

= 0.15 × 120 + 0.005 × (20 × 18)
= 18 + 1.8 = 19.8t

####