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DE TAILED EXPL ANATIONS

1.1.1.1.1. (b)(b)(b)(b)(b)

A =

3 3

0 1 1

1 1 0

1 0 1 ×

 
 − 
 − − 

order of matrix = 3
Rank = 2

∴ dimension of null space of A = 3 – 2 = 1.

2.2.2.2.2. (a)(a)(a)(a)(a)

f(z) = 1+(1 – z) + (1 – z)2 + – – – = 
1

1 (1 )z− −
 = 

1 1
1 1 z z

=
− +

3.3.3.3.3. (b)(b)(b)(b)(b)

f (x) = –2 + 6x – 4x2 + 0.5x3

f ′(x) = 6 – 8x + 1.5x2

xini = 0

By Newton Raphson Method, x1 =
( )
( )

ini
ini

ini

f
f

−
′

x
x

x
 = 

2
0

6
−

−

⇒ x1 =
1
3

∴ ∆x = 1
1
3n− =i ix x

4.4.4.4.4. (b)(b)(b)(b)(b)
u = f (x – cy)

u∂
∂x

= f ′(x – cy)(1)

u
y
∂
∂ = f ′(x – cy)(–c) = –c ⋅ f ′(x – cy) = 

u
c

∂
− ⋅

∂x

∴ u uc
y
∂ ∂+
∂ ∂x

= 0

5.5.5.5.5. (a)(a)(a)(a)(a)

Curl of vector =
∂ ∂ ∂
∂ ∂ ∂

i

x

x2 2 32 3

j k

y z

z y

= 3 2( ) (3 )y z
y z

 ∂ ∂
 ∂ ∂ 

i
3 2( ) (2 )j y

z
∂ ∂ −  ∂ ∂ 

x
x  

2 2(3 ) (2 )k z
y

 ∂ ∂+  ∂ ∂ 
x

x
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= i[3y2 – 6z] – j [0] + k[0 + 0]
At, x = 1, y = 1 and z = 1

Curl = i(3 × 12 – 6 × 1) = – 3i

6.6.6.6.6. (d)(d)(d)(d)(d)
Problem can be solved by hypergeometric distribution

100

20 D 80 ND

2

2 D 0 ND

p(X = 2) = 2 0

2

20 80
100
C C

C
×

 = 
19
495

7.7.7.7.7. (d)(d)(d)(d)(d)

Let z = a + bi

Since z is shown inside the unit circle in I quadrant, a and b are both +ve and 2 20 1a b< + <

Now
1
z

=
1

a b+ i

2 2

a b
a b

−
+

i = 2 2 2 2

a b
a b a b

−
+ +

i

Since a, b > 0,

2 2

a

a b+
> 0

2 2

b
a b
−
+

< 0

So 
1
z

 is in IV quadrant.

1
z

=
2 2

2 2 2 2
a b

a b a b
−   +      + +

= 2 2

1

a b+
 = 

2 2

1

a b+

Since 0 < 2 2 1a b+ <

2 2

1

a b+
> 1

So 
1
z

 is outside the unit circle is IV quadrant.
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8.8.8.8.8. (a)(a)(a)(a)(a)

2

2
+d y

y
dx

= 0

D2 + 1 = 0
D = ± i = 0 ± 1i

∴ General solution is
y = e0x

 [C1 cos(1 × x) + C2 sin(1 × x)]
= C1 cos x + C2 sin x
= P cos x + Q sin x

where P and Q are some constants.
9.9.9.9.9. (a)(a)(a)(a)(a)

10.10.10.10.10. (a)(a)(a)(a)(a)

L(cos ωt) =
+ ω2 2

s

s

11.11.11.11.11. (d)(d)(d)(d)(d)
The problem can be represented by the following diagram.

p(1R and 2B) = 
4 6

1 2
10

3

60 1
120 2

C C
C
× = =

10

4 R 6 B

3

1 R 2 B

12.12.12.12.12. (c)(c)(c)(c)(c)
Given equation are

x + 2y + z = 6
2x + y + 2z = 6

x + y + z = 5
Given system can be written as

1 2 1
2 1 2
1 1 1

y
z

   
   
   
      

x
=

6
6
5

 
 
 
  

Augmented matrix is 
 
 
 
  

1 2 1 6

2 1 2 6

1 1 1 5

By gauss elimination
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2 1

3 1

3 2

2

1
3

1 2 1 6 1 2 1 6

2 1 2 6 0 3 0 6

1 1 1 5 0 1 0 1

1 2 1 6

0 3 0 6

0 0 0 1

R R
R R

R R

−
−

−

   
   → − −   
   − −   

 
 → − − 
  

r(A) = 2
r(A | B) = 3

Since the rank of coefficient matrix is 2 and rank of argument matrix is 3, which is not equal. Hence system
has no solution i.e. system is inconsistent.

13.13.13.13.13. (a)(a)(a)(a)(a)
Putting

f ′(x) = 6x2 – 6x  – 36 = 0
⇒ x2 – x  – 6 = 0
⇒ x = 3 or – 2
Now f″(x) = 12x  – 6
and f″(3) = 30 > 0 (minima)
and f″(–2) = –30 < 0 (maxima)
Hence maxima is at x  = –2 only.

14.14.14.14.14. (a)(a)(a)(a)(a)

A.A.A.A.A.
dy
d x

=
y
x

dy
y =

d x
x

⇒ ∫
dy
y

= ∫
d x
x

log y = log x + log c = log cx
y = cx ... Equation of straight line.

B.B.B.B.B. dy
d x

=
−y
x

dy
y

=
−d x

x
 ⇒ ∫

dy
y  = −∫

d x
x

log y = –log x + log c
log y + log x =  log c

log yx = log c
yx = c
y = c/x ... Equation of hyperbola.
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C.C.C.C.C.
dy
d x

=
y
x

, y dy = x dx

⇒ ∫y dy = ∫ dx x

2

2
y

 – 
2

2
x

=
2

2
c

 → const

y2 – x2 = c2

2

2

y

c
 – 

2

2c

x
= 1 ... Equation of hyperbola.

D.D.D.D.D.
dy
d x

=
−
y
x

 ⇒ ∫y dy  = −∫ dx x

2

2
y

=
2

2
− x

 + 
2

2
c

2

2
y

 + 
2

2
x

=
2

2
c

x2 + y2 = c2 ... Equation of a circle

15.15.15.15.15. (c)(c)(c)(c)(c)
f(x) = 2x3 – 3x2 in [–1, 2]

f ′(x) = 6x2 – 6x
f ′(x) = 0

6x2 – 6x = 0 x = –1 f(–1) = –5 G. Min.
6x(x – 1) = 0 x = 2 f(2) = 4

x = 0, 1 x = 0 f(0) = 0
f ′′(x) = 12x – 6 x = 1 f(1) = –1
f ′′(0) = –6 Max
f ′′(1) = 6 Min

G. Minima is –5 at x = 1.

16.16.16.16.16. (d)(d)(d)(d)(d)
Trace = Sum of eigen values

1 + a = 6

⇒ aaaaa = 5 = 5 = 5 = 5 = 5

Determinant = Product of eigen values

(a – 4b) = –7

5 – 4b = –7

–4b = –12

⇒ bbbbb ===== 33333

∴ a = 5, b = 3
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17.17.17.17.17. (c)(c)(c)(c)(c)
From Newton– Raphson method

x1 = x0 – 0

0

( )
( )

f
f ′

x
x

... (i)

Given function is, f(x) = x3 + 3x – 7
and f’(x) = 3x2 + 3
Putting x0 = 1,

f(x0) = f(1) = (1)3 + 3 × (1) – 7 = – 3
f ′(x0) = f’(1) = 3 × (1)2 + 3 = 6

Substituting x0, f (x0) and f ′(x0) values into (i) we get,

∴ x1 =
3

1 1
6
− − ×  

 = 1.5

18.18.18.18.18. (a)(a)(a)(a)(a)
Eigen values are

A – λI  = 0

− λ   
−   λ   

0 1 0

1 0 0 = 0

1

1

−λ −
−λ = 0

λ2 + 1 = 0
λ2 = –1

∴ λ = ± i
to find eigen vector,
λ = +i

1

2

1

1

− −   
  −   

xi
i x

=
0

0
 
 
 

∴ –i x1 – x2 = 0 and x1 – ix2 = 0

clearly, 1

2

 
 
 

x
x

=
1

and ,
1

j
j

   
   −   

 satisfy

λ = 1

2

1

1

−   −   
   

xi
i

i x
=

0

0
 
 
 

ix1 – x2 = 0 and x1 + ix2 = 0
clearly,

1

2

 
 
 

x
x

= 1
and ,

1

j
j

   
   −   

 satisfy

Thus, the two eigen value of the given matrix are 
1

,
1

j
j

   
   − −   

 or 
1

, .
1

j
j
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19.19.19.19.19. (b)(b)(b)(b)(b)

Let I =
a

o
d

a+ −∫
x x

x x
...(i)

Since ( )
a

o
f d∫ x x  = ( )

a

o
f a d−∫ x x

I =

a

o

a d
a

−
− +∫

x x
x x ...(ii)

(i) + (ii) ⇒ 2I =
a

o

a d
a

+ −
+ −∫

x x x
x x

⇒ 2I =
a

o
d∫ x

⇒ 2I = a
⇒ I = a/2

20.20.20.20.20. (c)(c)(c)(c)(c)
We need absolute maximum of
f (x) = x3 – 9x2 + 24x + 5 in the interval [1, 6]
First find local maximum if any by putting f ′(x) = 0.
i.e. f ′(x) = 3x2 – 18x + 24 = 0
i.e. x2 – 6x + 8 = 0

x = 2, 4
Now f″(x) = 6x – 18

f″(2) = 12 –18 = –6 < 0(So x = 2 is a point of local maximum)
and f″(4) =  24 – 18 = +6 > 0(So x = 4 is a point of local minimum)
Now tabulate the values of f at end point of interval and at local maximum point, to find absolute maximum
in given range, as shown below:

( )
1 21
2 25
6 41

fx x

Clearly the absolute maxima is at x = 6
and absolute maximum value is 41.

21.21.21.21.21. (a)(a)(a)(a)(a)

ABT =
1 5 7 8

6 2 7 4
   
   
   

 = 
38 28

32 56
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22.22.22.22.22. (a)(a)(a)(a)(a)

f(t) = 1
2

1

( 1)
L

s s
−  
 

+ 

2

1

( 1)s s +
=

2 1
A B C
s ss
+ +

+

2

1

( 1)s s +
=

2

2
( 1) ( 1) ( )

( 1)
As s B s C s

s s
+ + + +

+

Matching coefficient of s2, s and constant in numerator we get,
A + C = 0 ... (i)
A + B = 0 ... (ii)

B = 1 ... (iii)
Solving we get A = –1, B = 1, C = 1

So, f(t) = 1
2

1 1 1
1

L
s ss

−  − + + + 

= –1 + t + e–t = t – 1 + e–t

23.23.23.23.23. (c)(c)(c)(c)(c)
Pole, z = 2 lies inside z = 3

Res f(z) =
2

2

2 3lim( 2)
2z

z zz
z→

− +
−

−

z = 2, = 8 – 4 + 3 = 7
By Cauche residue theorem

I = 2πi(7) = 14πi

24.24.24.24.24. (c)(c)(c)(c)(c)

xn + 1 =
( )
( )

n
n

n

f
f

−
′
x

x
x

x = 2, f(x0) = 2 2 3 2 1+ − = −

f′(x) =
1

1
2 x

+

f′(x0) =
1

1
2 2

+

Then, x1 = 0
0

0

( )
( )

f
f

−
′
x

x
x

 = 
2 1

2
11

2 2

−
−

+

⇒ x1 = 1.694
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25.25.25.25.25. (b)(b)(b)(b)(b)
f(x) = x3 – 3x2 – 24x + 100 x∈[–3, 3]

f ′(x) = 3x2 – 6x – 24
f ′(x) = 0 at x = 4, – 2

Critical points are {–3, –2, 3}
f (–3) = –27 – 27 + 72 + 100 = 118
f (–2) = –8 – 12 + 48 + 100 = 128
f (3) = 27 – 27 – 72 + 100 = 28

Hence f (x) has minimum value at x = 3 which is 28.

26.26.26.26.26. (c)(c)(c)(c)(c)

dy
dt

= – 5y

∫dy
y = −∫5dt

ln y = – 5t + C
at t = 0

y = 2
ln 2 = C

So, ln y = – 5t + ln 2

ln
2
y

= – 5t

2
y

= e–5t

y = 2e–5t

at t = 3
y = 2e–15

27.27.27.27.27. (c)(c)(c)(c)(c)

x(z) =
1 2

( 1) ( 2)
z

z z z
−

− −

poles are z = 0, z = 1 and z = 2
Residue at Residue at Residue at Residue at Residue at zzzzz = 0 = 0 = 0 = 0 = 0

residue = value of 
1 2

( 1) ( 2)
z

z z
−

− −
 at z = 0

=
1 2 0 1

(0 1) (0 2) 2
− ×

=
− −

Residue at Residue at Residue at Residue at Residue at zzzzz = 1 = 1 = 1 = 1 = 1

residue = value of 
1 2
( 2)

z
z z
−
−

 at z = 1

=
1 2 1

1
1(1 2)
− ×

=
−
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Residue at Residue at Residue at Residue at Residue at zzzzz = 2 = 2 = 2 = 2 = 2

residue = value of 
1 2
( 1)

z
z z
−
−

 at z = 2

= 1 2 2 3
2(2 1) 2
− × = −

−

∴  The residues at its poles are 1
,1

2
 and 

3
2

− .

28.28.28.28.28. (d)(d)(d)(d)(d)
P(A wins) = p(6  in first throw by A) + p(A not 6, B not 6, A 6) + ...

= 1 5 5 1
6 6 6 6
+ ⋅ ⋅ + ⋅ ⋅ ⋅

=
2 41 5 5

1
6 6 6

    + + + ⋅ ⋅ ⋅        
 = 2

1 1 6
6 115

1
6

⋅ =
 −   

29.29.29.29.29. (a)(a)(a)(a)(a)
Space headway,

S = 60 t – 60 t2

dS
dt

= 60 – 120t = 0

t = 0.5 hr = 30 minutes

2

2

d S

dt
= –120 × 0 (Maxima)

∴ Maximum space head
Smax = 60 × 0.5 – 60 × (0.5)2 = 15 km

30.30.30.30.30. (c)(c)(c)(c)(c)

2

2

d y
dx

= y

⇒ 2D y = y (∴ d/dx = D)

(D2 – 1)y = 0
D2 – 1 = 0

D = ± 1
y = C1 e

x + C2 e
–x

Given point passes through origin
⇒ 0 = C1 + C2

C1 = – C2 ...(i)
Also, point passes through (ln 2, 3/4)

⇒
3
4

= C1 e
ln2 + C2 e

–ln2
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3
4

= 2
12

2
C

C +

⇒ C2 + 4C1 = 1.5 ...(ii)
From (i) C1 = – C2, putting in (ii), we get
⇒ – 3C2 = 1.5

C2 = – 0.5
∴ C1 = 0.5
⇒ y = 0.5 (ex – e–x)

y =
2

e e−−x x


