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DETAILED EXPL ANATIONS

1 .1 .1 .1 .1 . (c)(c)(c)(c)(c)
Since total power absorbed or delivered in the circuit
⇒ ∑P = 0;
then –30 × 6 + 6× 12 + 3 V0 + 28 + 28 × 2 – 3 × 10 = 0

72 + 84 + 3 V0 = 210;
or 3 V0 = 54
⇒ V0 = 18 V

2 .2 .2 .2 .2 . (d)(d)(d)(d)(d)
Converting Y circuit to ∆ circuit, the circuit is as shown below,

x

y

10 Ω

5 Ω

10 Ω

a b

d c

R1
R2 R3

Further simplifying the circuit we get,

x

y

2.73 Ω

3.75 Ω

a b

d c

3.75 Ω

R1 =
2 2

2 2
2 0

×+ +
+

 = 6 Ω

Due to symmetry of the network inside star network,
R1 = R2 = R3 = 6 Ω

Rab = 1

1

5
2.73

5
R
R

= Ω
+

Rbc = 3

3

10
10

R
R+

 = 3.75 Ω

Rad = 2

2

10
10

R
R+

 = 3.75 Ω

Rx – y = ( )ad ab bcR R R+�

= 2.375 Ω

3 .3 .3 .3 .3 . (b)(b)(b)(b)(b)
For the given circuit,

time constant, τ =
eq

L
R

Req = (5  20) + 1 = 5 Ω
L = 2 H;
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τ =
2

sec
5

∴ i(t) = i(0)e–t/τ

i(t) = 10e–2.5t A
For v(t); v(t) = 20 i0 (i0 is current in 20 Ω resistor)

Where i0 =
5

[ ( )]
5 20

t−
+

i  = –2 e–2.5t A

v(t) = 20 × (–2 e–2.5t) = –40 e–2.5 t V for t > 0

4 .4 .4 .4 .4 . (c)(c)(c)(c)(c)
Before t = 0, the circuit has reached steady state so that the capacitor acts like an open circuit.
The circuit is equivalent to that shown in figure after transforming the voltage source.

0.5 i

i

2 A 80 Ω

0.5 i V0

40 Ω

From circuit,

0.5 i = 02
40
V

− ...(i)

or, i = 0

80
V

...(ii)

Hence, from equation (i);

00.5
80
V

× = 02
40
V

−

or V0 =
320

64 V
5

=

or i = 0 0.8 A
80
V

=

5 .5 .5 .5 .5 . (a)(a)(a)(a)(a)
Consider the circuit given below.

I1 V1

+

– –

1 1
s

1 s

1
s

I0

I2 = 0

+

V2 = 0

I1

For Z21 ;

I0 =
1 1

1 11
1

1 11 1 11 1
1

s s

ss
s ss s

  × ×   +=
  + + ++ + +   +

I I�

�

I0 = 1 13 2
2

1
2 3 11

1

s
ss

s s s ss s
s

+ =
+ + ++ + +

+

I I
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∴ V2 = 1
0 3 2

1

2 3 1s s s s
× =

+ + +
II

Z21 = 2
3 2

1

1

2 3 1

V
s s s

=
+ + +I

6 .6 .6 .6 .6 . (a)(a)(a)(a)(a)
Applying KVL,

Vxy – jωL2 i2 – jω M i1 = 0
as i2 = 0
then, Vxy – jω M i1 = 0 ...(i)
applying KVL in loop 1

V1 = jωL1 i1 ...(ii)
Using value of i1 from equation (ii) in equation (i)

Vxy = 1

1

V
j M

j L
 

ω  ω 
 = 1

1

MV
L

7 .7 .7 .7 .7 . (b)(b)(b)(b)(b)
The circuit can be redrawn as,

Cx

A

B

16 Fµ12 Fµ4 Fµ8 Fµ24 Fµ

∴ Ceq = Cx + [24 + 8 + 4 + 12 + 16] µF
Ceq = Cx + 64 µF ...(i)

∵ Energy stored in capacitor is

E = 21
2
CV

536 =
2

eq
1 (4)
2
C ×

or Ceq = 2
536 2

(4)
×

 = 67 µF

From equation (i), Cx = 67 – 64 = 3 µF

8 .8 .8 .8 .8 . (d)(d)(d)(d)(d)

Vrms =
212.2

2 2
mV =  = 

150 2 150.04 150 V
2
× = ≈

and VR = 120 V (given)

∴ VL = 2 2150 120 90 V− =

∵  I = 3
120 0.12 A

1 10
RV
R

= =
×

∴  VL =  I × ωL

or L =
90 1.5 H

500 0.12
LV
I

= =
ω× ×
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9 .9 .9 .9 .9 . (c)(c)(c)(c)(c)
The circuit can be redrawn as,

R

Li( )t+
–v t( )

Applying KVL, we get,

v(t) = d
L R

dt
+ ⋅i i

Since, the unit step voltage has been given i.e.
v(t) = u(t)

or v(t) – iR = d
L

dt
i

(v(t) – iR)dt = Ldi ...(i)

or
1

dt
L

=
( )

d
v t R−

i
i

Integrating both sides, we get,

0

1 t
dt

L ∫ =
1

o

d
R−∫

I

I

i
i

...(ii)

On solving equation (ii), we get,

or, i(t) = / /1
(1 ) ( )R L t R L t

oe e
R

− −− + −I

at t = τ = ,
L
R

i(t = τ) =
0.632 V

0.368 oR
+ I

10.10.10.10.10. (d)(d)(d)(d)(d)
For maximum power to be transferred,

ZL = sZ∗

Here, Zs = (2 – j4)Ω

∴ sZ∗ = (2 – j4)∗ = (2 + j4) Ω

11.11.11.11.11. (c)(c)(c)(c)(c)
The given circuit can be drawn as,

1 H

2 H

1
2

H

1 H
a

b
c

d

Converting ‘Y’ ‘acd’ to ‘∆’, we get
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Lac
LcdLad

2 H

Here, Lcd =

1 11 1 1 1
2 2 2 H

1

× + × + ×
=

Lad =

1 11 1 1 1
2 2 2 H

1

× + × + ×
=

Lac =

1 11 1 1 1
2 2 4 H1

2

× + × + ×
=

∴ The circuit can be redrawn as

2 H2 H

2 H

4 H

1/5 H1/5 H
L2

where, L2 =
2 4 8 4 H
2 4 6 3

× = =
+

12.12.12.12.12. (c)(c)(c)(c)(c)
To find RTh , consider the below circuit

a b

10 Ω 10 Ω 10 Ω

10 Ω 20 Ω

20 Ω ⇒ Ω Req = 10 

30
 Ω

30 Ω

10 Ω

30 Ω

a b

10 Ω⇒

Transforming the Y-sub network to a ∆ network.
then RTh = Rab = [30  (7.5 + 7.5)] = 10 Ω
To find VTh, we transform the 20 V and 5 V sources.
We obtain the circuit shown as below
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+– +–
loop-1 loop-2

+–

10 Ω 10 Ω 10 Ω

10 Ω10 Ω 10 V
a b

30 V 50 V
i1 i2

Applying KVL in loop-1 we get
–30 + 50 + 30 i1 – 10 i2 = 0

or 3 i1 – i2 = –2 ...(i)
Apply KVL in loop-2, we get

–50 – 10 + 30 i2 – 10 i1 = 0
or –i1+ 3 i2 = 6 ...(ii)
From equation (i) and (ii), we get

i1 = 0 A,
i2 = 2 A

Now: applying KVL to the output loop,
–Vab – 10 i1 + 30 – 10 i2 = 0

⇒ –Vab + 30 – 10 × 2 = 0
VTh = Vab = 10 V

13.13.13.13.13. (c)(c)(c)(c)(c)
Showing the corresponding currents in all the branches, the circuit is shown as below

–
+

+
–

I 1 Ω

3 V

4 Ω

1 Ω2 Ω

5 V

1.8 V3
I – 2.8V3

I –V3

2.8V3

V3
–

+V
3

Now we apply KVL in outer loop
–3 + I(1) – 5 + V3 = 0

I + V3 = 8 ...(i)
Applying KVL in bridge,
–5 + V3 –2 (I – V3) – 4 (I – 2.8V3) = 0

14.2 V3 – 6 I = 5
I = 5.37 A

V3 = 2.62 V

14.14.14.14.14. (c)(c)(c)(c)(c)
Applying KCL at node

0
010 2

4
V

V+ + = 0;

Solving we get,
V0 = – 4.444 V

Current through the controlled source
i = 2V0 = –8.888A
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and the voltage across it,

V = 0(6 4)
4

V
+ ×  = –11.111 volts

Hence, power absorbed by dependent source
P = (–8.888)(–11.111) = 98.75 W

15.15.15.15.15. (c)(c)(c)(c)(c)
1st combine 10 Ω and 40 Ω resistors and redrawing the circuit.

⇒ Req

2 Ω 15 Ω 10 Ω

8 Ω 20 Ω 30 Ω

50 Ω

We now have,
(10 Ω + 15 Ω)  50 Ω = 16.67 Ω

2 Ω 16.67 Ω

8 Ω 50 Ω

equivalent resistance = ( )2 50 16.67 8Ω + Ω Ω + Ω�

= 22.5 Ω

16.16.16.16.16. (d)(d)(d)(d)(d)
The voltage across inductor is,

vL = Ld
L

dt
i

 = 
( )sd t

L
dt
i

Current across capacitor is given by,

ic = cdv
C

dt
vc = 3vL

⇒ ic =
2

2

( )
3 3 . sL d tdV
C C L

dt dt
=

i
 = –9.6 sin 4t A

17.17.17.17.17. (a)(a)(a)(a)(a)
∵ From, the circuit;

+
–

70Ω

20Ω

30Ω

5Ω

a b
I0

–

+
V0

50V
i2

i1
–

+
V1

I
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We can get ; I = ( ) ( )
50

70 30 20 5+
 = 50 2

(21 4)
A=

+

∵ V1 = 21 × I = 42 V, & V0 = 4I = 8V

i1 = 1

70
V

 = 0.6 A; i2 = 0

20
V

 = 0.4 A

Now, KCL at node ‘a’, i1 = i2 + I0 ; I0 = 0.6 – 0.4 = 0.2 A
Hence, V0 = 8 V, I0 = 0.2 A

18.18.18.18.18. (c)(c)(c)(c)(c)
The circuit can be redrawn as

+
–

+
–10 V

+ –

5 Ω

2 Ω

3 Ω

5 Ω
w c

b a

d
5 V

z

x

y

1

i1 i2
20 V5 Ω

2 Ω

2

The current in the loop 1 is given by,

i1 = 10
1A

5 3 2
=

+ +
...(i)

∴ Vw – x = 2 × 1 = 2 V
Vx – w = –Vw – x = –2 V

Similarly the current in loop 2 is given by,

i2 =
20

2 A
5 5

=
+

...(ii)

Vc – d = 5 × 2 = 10 V
Thus, the circuit can be redrawn with respective polarities of the voltage drops as,

+
–

+
–10 V

+ –

5 Ω

2 Ω

3 Ω

5 Ω5 V

y

20 V

– +

5 Ω

+ –

2 Ω

2 V

z

x w
0 A

b a

c d

10 V

By inspecting the respective polarities, we get,
Vx – d = Vx – w + Vw – c + Vc – d

= –2 + 5 + 10 = 13 V

19.19.19.19.19. (c)(c)(c)(c)(c)
By redrawing the circuit, we get,

200 V
+

–
25 V

Circuit
X

I a

c

b
0.1 A

+

–
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Let us assume the tap position at ‘b’
∵ Rac = 500 Ω (given)
Let, Rbc = x Ω
∴ Rab = (500 – x)Ω
Also, Vab = 200 – 25 = 175 V

The circuit current, I =
25

0.1+
x

We can also write, Vab = I × (500 – x) = 25 0.1 (500 ) + −  
x

x

or 0.1x 2 + 150x  – 12500 = 0
By solving, we get,

x = 79.16 Ω and –1579.16 Ω
By considering x = 79.16 Ω,

I = +
x

25V
0.1A = 0.416 A

Total power supplied = 200 V × I = 200 V × 0.416 A = 83.2 W

20.20.20.20.20. (a)(a)(a)(a)(a)
The circuit can be redrawn as,

Z1 Z2

Z3

( ) Ω30 + jX

Z

Total impedance of this circuit, Z = Z3 + (Z1 Z2)

= (30 + jX) + 
(20 10) (10 30)
20 10 10 30

j j
j j

 + −
 + + − 

= (30 + jX) + 
200 600 100 300

30 20
j j

j
− + +

−

= (30 + jX) + 
500 500

30 20
j
j

 −
  − 

Using factorization, we get,

= 30 + jX + 2 2

500(1 ) (30 20)

(30) (20)

j j − +
 + 

= 30 + jX + 
5

13
 (50 – j10) = 

5 5
30 50 10

13 13
j X   + × + − ×      

At the resonant condition, the imaginary part of the total impedance expression is zero.

∴ 5
10

13
X − × = 0

or, X =
50
13

 = 3.85 Ω
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21.21.21.21.21. (c)(c)(c)(c)(c)
In order to determine ZL for maximum transfer, we find Thevenin’s equivalent impedance ZTh across the
terminals of ZL. For this, the voltage source should be replaced by a short circuit and element values
should be expressed in terms of their respective impedances.
Thus, by redrawing the circuit, we get,

1 Ω

1 Ω

j1 Ω

– 2 j Ω

– 2 j Ω

a b

As the two capacitors are connected is parallel, the equivalent impedance of their combination is
(–j2 Ω || –j2 Ω) = –j1 Ω

1 Ω – 1 j Ω

ba

j1 Ω 1 Ω

Therefore, ZTh =
(1 1) (1 1) 2 1
1 1 1 1 2

j j
j j

+ − = = Ω
+ + −

For maximum power transfer, ZL = ∗ = ΩTh 1Z

22.22.22.22.22. (c)(c)(c)(c)(c)
iL(0–) = iL(0

+) = 0 A
vc(0–) = vc(0

+) = 100 V
The circuit can be redrawn in s-domain as,

–
+

sL

I( )s

Vc(0 )+

s = 100
s

1
sC

or I(s) =
2

100
100 1

11
s

L ssL
LCsC

 
     =    + +    

=
2

2

1

100
1

C LC
L

s
LC

 
 
 
   +     

Taking inverse Laplace transform of the above equation, we get,

i(t) = 1
100 sin

C
t

L LC

Now by putting the values of L and C, we get,
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i(t) =
6

4
3 9

10 10100 sin (10sin10 ) A
1 10 10 1 10

t t
−

− −

× =
× × ×

23.23.23.23.23. (a)(a)(a)(a)(a)
We apply a Y to ∆ transformation,

1 Ω – 2 j Ω

j4 Ω

Zeq

a b

c

Zab

Zac Zbc

Zab =
2 2 4 2 2

2 2
j j j
j j

− + +=  = (1 – j) Ω

Zac =
2 2

(1 )
2

j
j

+ = + Ω

Zbc =
2 2 ( 2 2)

1
j j

j
+ = − + Ω
−

∴ j 4  Zab = j 4  (1 – j) = (1.6 – j 0.8) Ω
∴  1  Zac = 1  (1 + j) = (0.6 + j 0.2) Ω
∴ ( j4  Zab ) + (1  Zac) = (2.2 – j 0.6) Ω

1

eqZ
=

1 1 1
2 2 2 2.2 0.6j j j

+ +
− − + −

= j 0.5 – 0.25 – j 0.25 + 0.4231 + j 0.1154
= 0.173 + j 0.3654 = 0.404∠64.66°

Zeq = 2.473∠–64.66° Ω = (1.06 – j2.23) Ω

24.24.24.24.24. (b)(b)(b)(b)(b)
Let V0 represent the voltage across the current source and then we apply KCL at that node,

0240
4

50
V−

+ = 0 0
20 40 30

V V
j j

+
− +

(0.36 + j 0.38) V0 = 88

V0 =
88 168.13 46.55 V

0.36 0.38j
= ∠ − °

+
Now current through inductor,

I1 = 0 3.363 83.42 A
40 30

V
j

= ∠ − °
+

Total power delivered in inductor,
S = V0I1

∗ = 168.13∠–46.55° × 3.633∠83.42°
= (452.34 + j 339.25)

reactive power in inductor =  339.25 VAR

25.25.25.25.25. (c)(c)(c)(c)(c)

For t < 0, VR =
1 2

1 2

2R R
R R+ ,

∴ VR (0
+) = 10 = 

1 2

1 2

2R R
R R+
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∴ R1 || R2 = 5 Ω ...(i)

iL(0) = 1

1 2

2R
A

R R+

For t > 0; iL(t) = 1/(0) t
L e− τ×i [Where τ1 = L/R2 = 1/50R2]

iL(t) = 2501

1 2

2 R tR
e

R R
−

+

∴ VR (t) = 2501 2

1 2

2 R tR R
e

R R
−

+

VR (1 ms) =
3

250 105 10 Re
−− ×=

5 = 20.0510 Re−

0.05 R2 = 0.6931,
R2 = 13.863 Ω

26.26.26.26.26. (b)(b)(b)(b)(b)
Short circuiting V2 and redrawing the circuit

10 Ω 0.5I1

5 Ω

I2I1

V1

+

–

I I– 0.5 12 

V2 = 0 V
V1 = 10(I1 – 0.5 I1 + I2)
V1 = 5 I1 + 10 I2

V1 = –5 I2

Y21 = 2

1

1
0.2

5V
−

= = −
I

�

V 1 = 5I1 – 110
5
V

×

3V1 = 5I1

Y11 = 1

1

3
0.6

5V
= =

I
�

27.27.27.27.27. (b)(b)(b)(b)(b)
For maximum power transfer, let us calculate the Thevenin’s equivalent resistance,

+
–

10 Ω
5 Ω

4i1

i1

V

A

B

+–

i

Using KCL at node A, we get,

14
5 10

V i V−
+ = i
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2V – 8i1 + V = 10i

2 8
10
VV V − +  

= 10i

(20 + 10 – 8)V = 100i

or RTh =
V
i  = 

100
22

Ω  = 4.545 Ω

Finding VTh:

+
–

10 Ω5 Ω

4i1

i1

+

–
VTh

+– 20 V

A

B
Using KCL at node A, we get,

Th 1 Th4 20
5 10

V i V− −+ = 0

2VTh + VTh – 20 = 8i1

3VTh =
Th 208 20

10
V −  +  

3VTh – 20 = Th8 160
10 10
V

−

3VTh – 0.8VTh = 4

VTh =
4 1.818 V

2.2
=

∴ Maximum power transferred will be,

P =
2
Th

Th4
V
R  = 

22
Th

Th

(1.818) 181.81 mW
4 4 4.545
V
R

= =
×

28.28.28.28.28. (a)(a)(a)(a)(a)
At steady state,

I = 1 AE
R

=

When switch moves from position ‘a’ to ‘b’, the tapped energy in L starts discharging through ‘C ’.
∴ By KVL in the circuit

1diL i dt
dt C

+ ∫ = 0

or, 
(0 )1( ) (0 ) ( ) c

L
vsLI s L i I s

Cs s

+
+− + +  = 0

∵ iL(0
–) = iL(0

+) = 1 AE
R

=

and vc(0–) = vc(0+) = 0 V
Thus,
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1 ( ) ( ) EI s sLI s
Cs R

 + + −  
= 0

or, I(s) =
2

/
1

Es R

L s
LC

 +  
taking inverse Laplace transform of the above equation, we get,

i(t) =
1 cosE t
L R LC

 ⋅  
 

By putting the values of parameters, we get,
i(t) = cost A

29.29.29.29.29. (c)(c)(c)(c)(c)
In case of charging,

vc(t) =
/(0 )[1 ]tv e+ − τ−

20 =
5/50 [1 ]e− τ−

20 1
50

− = –e–5/τ

5−
τ = –0.510

or, τ = 9.788 sec
∵ τ = RC = R × 50 × 10–6 = 9.788 sec
∴ R = 195.76 kΩ

30.30.30.30.30. (c)(c)(c)(c)(c)
Referring the secondary side, towards the primary, we get,

+–

48 Ω

′4cos30t ZL

Where, ZL = 8 (8 4)
j

j
C

− = − Ω
ω

and n = 
1
3

∵ LZ ′ = 2 9 (72 36)L
L

Z Z j
n

= = − Ω

∴ I1 =
4 0 4 0

48 72 36 125.28 16.70j
∠ ° ∠ °

=
+ − ∠− °

I1 = 0.0319∠16.70°

∴ P8 Ω =
2

31 72 0.5088 10 72
2
I −× = × ×

P8 Ω = 36.63 mW


