CLASS TEST							.:01 SP_ME _	_ABC_	_210322
Delhi Bhopal Hyderabad Jaipur Lucknow Pune Bhubaneswar Kolkata Patna									
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612									
•	тне	0	RY	OF	= M <i>I</i>	٩C	HIN	E	S
MECHANICAL ENGINEERING									
Date of Test : 21/03/2022									
AN	SWER KEY	>							
1.	(c)	7.	(a)	13.	(b)	19.	(b)	25.	(a)
2.	(b)	8.	(d)	14.	(c)	20.	(c)	26.	(b)
3.	(c)	9.	(c)	15.	(b)	21.	(b)	27.	(c)
4.	(d)	10.	(d)	16.	(b)	22.	(b)	28.	(d)
5.	(c)	11.	(b)	17.	(a)	23.	(c)	29.	(a)
6.	(b)	12.	(c)	18.	(d)	24.	(a)	30.	(d)

DETAILED EXPLANATIONS

1. (c)

Because shortest link is coupler.

2. (b)

Path of contact in involute profile is a straight line, which is common normal to the involute profiles of mating gears.

3. (c)

A governor in said to be sensitive if the displacement of the sleeve is high for a given fractional change of speed.

4. (d)

5. (c)

We know that minimum number of teeth required on pinion,

$$t = \frac{2A\omega}{G\sqrt{1 + \frac{1}{a}\left(\frac{1}{G} + 2\right)\sin^2\phi} - 1}$$
$$= \frac{2 \times 1}{3\sqrt{1 + \frac{1}{3}\left(\frac{1}{3} + 2\right)\sin^2 20^\circ - 1}}$$
$$= \frac{2}{0.133} = 15.04 \simeq 15$$

6. (b)

7. (a)

Given,

Coefficient of steadiness =
$$\frac{N_1 + N_2}{2(N_1 - N_2)}$$

 $N_1 \rightarrow \text{maximum speed}$
 $N_2 \rightarrow \text{minimum speed}$
 $50 = \frac{1000 + N_2}{2(1000 - N_2)}$
 $\Rightarrow \qquad N_2 = 980.19$

 $N_1 = 1000$

maximum fluctuation of speed = $N_1 - N_2 = 19.80$ rpm

8. (d)

Let energy at A be E unit

$$\begin{array}{rcl} E_A &= E \\ E_B &= E+50 \\ E_C &= E+50-20 = E+30 \\ E_D &= E+30+10 = E+40 \\ E_E &= E+40-30 = E+10 \\ E_{max.} &= E+50 \\ E_{min.} &= E+10 \end{array}$$

 $\Delta E(\text{max. fluctuation of energy}) = E_{\text{max.}} - E_{\text{min.}}$ = (E + 50) - (E)= 50 J

9. (c)

$$\in = \frac{1}{\left(\frac{\omega}{\omega_n}\right)^2 - 1}$$

$$\therefore \qquad \frac{1}{40} = \frac{1}{\left(\frac{\omega}{\omega_n}\right)^2 - 1}$$

$$\Rightarrow \qquad \left(\frac{\omega}{\omega_n}\right)^2 = 41$$

$$\therefore \qquad \frac{\omega}{\omega_n} = 6.403$$

10. (d)

Coriolis component of acceleration will only be zero if either angular velocity of slotted lever is zero or the velocity of slider is zero. The possible 4 conditions are

• Two at the extremes of slotted lever.

• Two when the driving crank and slotted lever are vertical because at that position, velocity of slider will be zero.

11. (b)

Absolute acceleration of *B* will be vector addition of centripetal acceleration, tangential acceleration due to rotation of link *OA* and Coriolis acceleration due to sliding motion of block *B*.

$$\vec{a}_c = \omega^2 r \text{(towards centre)}$$

= 4² × 4 = 64 m/s²
$$\vec{a}_t = r\alpha \text{(tangential in direction of }\alpha\text{)}$$

= 4 × 9 = 36 m/s²

Coriolis acceleration, $\vec{a}_{cr} = 2 V_{sliding} \omega$

$$= 2 \times 9 \times 4 = 72 \text{ m/s}^2$$

Direction of Coriolis acceleration \rightarrow Rotating direction of sliding velocity which is inwards through 90° in the direction of the angular velocity which is counter clockwise.

Therefore direction of Coriolis acceleration is opposite and collinear to the tangential acceleration.

$$(\omega_n)_{\text{Moon}} = \sqrt{\frac{g_{\text{Moon}}}{l}}$$
$$(\omega_n)_{\text{Moon}} = \frac{1}{\sqrt{6}}\sqrt{\frac{g_{\text{Earth}}}{l}} = \frac{1}{\sqrt{6}}(\omega_n)_{\text{Earth}}$$
$$(\omega_n)_{\text{Moon}} = 0.4082[\omega_n]_{\text{Earth}}$$

13. (b)

In a locomotive, the ratio of the connecting rod length to the crank radius is kept very large in order to minimize the effect of secondary forces.

14. (c)

$$AB = \sqrt{60^{2} + 240^{2}}$$

$$AB = 247.386 \text{ mm}$$

$$AB = .247 \text{ m}$$

$$\tan \theta = \frac{60}{240} = \frac{P}{247.386}$$

$$P = 61.8465 \text{ mm}$$

$$P = 0.06184 \text{ m}$$
h,

By Keneddy's theorem,

15. (b)

$$X_{max} = \frac{Fo}{\sqrt{(k - m\omega^2)^2 + (c\omega)^2}}$$

$$0.04 = \frac{10}{\sqrt{(6250 - 10 \times 25^2)^2 + (C \times 25)^2}}$$

$$0.04 = \frac{10}{C \times 25}$$

$$C = 10 \text{ Ns/m}$$

16. (b)

 \Rightarrow

Arm a rotates at 210 rpm clockwise, y = 210

Gear *D* is fixed, thus
$$y + \frac{7x}{3} = 0$$

arm Α B/C D Ε -40x $\frac{-7}{3} \times \frac{40}{60}$ -40 (-70 0 1 30 30 40 $\frac{7x}{3}$ -40*x* -14x0 x 30 9 40*x* $y + \frac{7x}{3}$ $y \frac{-14x}{9}$ у **y** + x y -30

or

$$210 + \frac{7x}{3} \text{ or } x = -90$$
Speed of $A = y + x$

$$210 - 90 = 120 \text{ rpm (clockwise)}$$
Speed of $E = y - \frac{14x}{9} = y - \frac{2x}{7}$

$$= 350 \text{ rpm (clockwise)}$$

www.madeeasy.in

17. (a)

Energy supplied by the motor in
$$\frac{1}{10s}$$

 $\Rightarrow E_2 = 5655 \times \frac{1}{10} = 565.5 \text{ Nm}$
Maximum furcation of energy of flywheel
 $\Delta E = E_1 - E_2 = 11310 - 565.5 = 10749.5 \text{ Nm}$
Mean speed, $N = \frac{N_1 + N_2}{2} = \frac{160 + 140}{2} = 150 \text{ rpm}.$
Now, ΔE
 $\Rightarrow 10744.5 = \frac{\pi^2}{900} \times mt^2 N(N_1 - N_2)$
 $\Rightarrow 10744.5 = \frac{\pi^2}{900} \times m \times f^2 \times 150(160 - 140)$
 $\Rightarrow m = 327 \text{ kg}$
21. (b)
 $r = 51.5 \text{ mm}$
 $R_a = 71.2 \text{ mm}$
 $R_a = 71.2 \text{ mm}$
 $R_a = 71.2 \text{ mm}$
 $CR = \frac{Arc of contact}{Circular pitch}$
 $= \frac{\left\{ \sqrt{71.2^2 - 64.2^2 \cos^2 20^2 - 64.2 \sin 20^2} \right\} + \left\{ \sqrt{57.5^2 - 51.5^2 \cos^2 20^2 - 51.5 \sin 20^2} \right\}}{\frac{cos 20^2}{20.169}}$
 $= \frac{\left\{ \sqrt{71.2^2 - 64.2^2 \cos^2 20^2 - 64.2 \sin 20^2} \right\} + \left\{ \sqrt{57.5^2 - 51.5^2 \cos^2 20^2 - 51.5 \sin 20^2} \right\}}{\cos 20^2}$
22. (b)
23. (c)
 $T_{mean} = \frac{1}{\pi_0^2} Td\theta$
 $= \frac{1}{\pi_0^2} (1000 + 400 \sin 2\theta - 500 \cos 2\theta) \times d\theta$
 $T_{mean} = 1000 \text{ Nm}$
At any instant, $\Delta T = T - T_{magn}$

 $= (1000 + 400 \sin 2\theta - 500 \cos 2\theta) - 1000$ = 400 sin 2 θ - 500 cos 2 θ $\therefore \Delta T$ is zero, when $400\sin 2\theta - 500\cos 2\theta = 0$ $\tan 2\theta = \frac{5}{4}$ $2 \theta = 51.34^{\circ}$ or 231.34° $e_{\max} = \int_{25.67}^{115.67} (400 \sin 2\theta - 500 \cos 2\theta) \times d\theta$ $e_{\rm max} = 640.312 \, {\rm Nm}$ $e_{\max} = Ik_s \left[\frac{\omega_{\max} + \omega_{\min}}{2}\right]^2$ $640.312 = 500 \times .35^2 \times k \times 10\pi \times 10\pi$ k = 0.01059*k*% = 1.059 %

24. (a)

...

Energy supplied by the motor is 1s = 5000 Nm Energy supplied by the motor is 1.5s = 7500 Nm Energy required/hole = 10000 Energy supplied by flywheel

e = 1000 - 7500 = 2500

also,

$$e = \frac{1}{2} \left(\omega_1^2 - \omega_2^2 \right)$$

$$2500 = \frac{1}{2} \times 200 \times 0.5^2 \times \left(\left(\frac{2\pi \times 350}{60} \right)^2 - \omega^2 \right)$$

$$\omega_2 = 35.25 \text{ rad/s}$$

Λ/

т

 \Rightarrow

25. (a)

$$\frac{N_1}{N_2} = \frac{T_2}{T_1} = 2.5, \ \frac{N_3}{N_4} = \frac{T_4}{T_3} = 4$$

$$\Rightarrow \qquad r_1 + r_2 = r_3 + r_4 = 160$$

$$\Rightarrow \qquad m_1 T_1 + m_2 T_2 = 320$$

$$\Rightarrow \qquad T_1 + T_2 = 100$$

$$T_1 = 28.57, \ T_2 = 28$$

$$T_2 = 72$$

$$\Rightarrow \qquad m_3 T_3 + m_4 T_4 = 320$$

$$T_3 + T_4 = 160$$

$$T_3 = 32$$

$$T_4 = 128$$

Exact velocity ratio = $\frac{T_2 T_4}{T_1 T_3} = \frac{72}{28} \times \frac{128}{32} = 10.29$

Τ

26. (b)

$$\frac{x_4}{x_9} = e^{-5 \times \xi \times T_d \times \omega_n} = 0.02$$

Take In of both sides

$$5 \times \xi \times \frac{2\pi}{\sqrt{1-\xi^2}} = \ln\left(\frac{1}{0.02}\right)$$
$$\xi = 0.12357$$
$$MF = \frac{1}{\sqrt{\left(1-\left(\frac{\omega}{\omega_n}\right)^2\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}}$$
e,
$$\frac{\omega}{\omega_n} = 1$$

At resonance,

$$MF = \frac{1}{2\xi} = \frac{1}{2 \times 0.12357}$$
$$MF = 4.0463$$

27. (c)

 \Rightarrow

$$KP = \sqrt{R_A^2 - R^2 \cos^2 \phi} - R \sin \phi = 12.65 \text{ mm}$$

$$PL = \sqrt{r_A^2 - r^2 \cos^2 \phi} - r \sin \phi = 11.49 \text{ mm}$$

$$Arc \text{ of contact} = \frac{KP + PL}{\cos \phi} = 25.69 \text{ mm}$$

$$Contact ratio = \frac{Arc \text{ of contact}}{\pi m} = 1.635$$

Contact ratio =
$$\frac{\pi m}{\pi}$$

For one pair of teeth in contact, arc of contact

$$= \frac{25.69}{1.635} = 15.712 \,\mathrm{mm}$$

Angle turned by pinion for one pair of teeth in mesh

$$= \frac{15.712}{r} \times \frac{180}{\pi} = \frac{15.712}{50} \times \frac{180}{\pi} = 18.00^{\circ}$$

28. (d)

Case I: When the slider is farthest from O,

So,

$$\alpha = \sin^{-1} \left(\frac{10}{50 + 200} \right) = 2.2924^{\circ}$$

Case II: When the slider is closest to O,

So,
$$\beta = \sin^{-1}\left(\frac{10}{200-50}\right) = 3.8225^{\circ}$$

Angle covered by the crank in backward stroke, $\theta_b = 180 - \alpha + \beta$ $\theta_b = 181.5301^{\circ}$ So, angle covered by the crank in forward stroke, $\theta_f = 360 - \theta_b$ $\theta_f = 178.4699^{\circ}$

Now,
$$\frac{t_b}{t_f} = \frac{\theta_b}{\theta_f} = \frac{181.5301}{178.4699} = 1.0171$$

29. (a)

30. (d)

 \Rightarrow

$$\frac{X_0}{X_N} = e^{\xi \omega_n N T_d}$$

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{40 \times 10^3}{200}} = 14.14 \text{ rad/s}$$

$$50 = e^{0.22 \times 14.14 \times (N T_d)}$$

$$N T_d = 1.26 \text{ s}$$
Total time = 1.26 s