
- C	LASS	5 TE	ST -			S.N	o.:01 S	K_CS_A_1	8-03-2022
	ERSE MADE EASE India's Best Institute for IES, GATE & PSUs								
						Pune Bhub madeeasy.in		-	a.11a
	DBMS								
COMPUTER SCIENCE & IT									
Date of Test : 18/03/2022									
AN	SWER K	EY >							
1.	(c)	7.	(d)	13.	(c)	19.	(a)	25.	(a)
2.	(b)	8.	(c)	14.	(b)	20.	(b)	26.	(b)
3.	(a)	9.	(c)	15.	(a)	21.	(d)	27.	(c)
4.	(b)	10.	(d)	16.	(a)	22.	(a)	28.	(a)
5.	(c)	11.	(b)	17.	(b)	23.	(b)	29.	(d)
6.	(d)	12.	(c)	18.	(a)	24.	(b)	30.	(b)

1. (c)

 F_1 covers F_2 : True F_2 covers F_1 : True

2. (b)

 $\pi_{A,B}(R) \Join_{R,B < S,B} \rho_{S(A,B)}(\pi_{B,C}(R))$

3. (a)

So, ER-diagram represents many student can enroll many courses.

- In ER-diagram Relationship set can have own attribute.
- Many to one relation can be represented the relation between non-weak entity set.

4. (b)

B⁺ tree index has more levels than B-tree index for large number of keys. Since in B-tree every key appears at only single level but which is not the case for B⁺ tree.

5. (c)

$$\frac{(3+2+1)!}{3!\cdot 2!} = \frac{6!}{3!\cdot 2!} = 60$$

6. (d)

Both the statements are incorrect.

The select operation is commutative i.e. $\sigma_{C_1}(\sigma_{C_2}(R)) \Leftrightarrow \sigma_{C_2}(\sigma_{C_1}(R))$.

Ultimately only those tupples will be selected which satisfy both C_1 and C_2 . Hence order does not matter. But Π (projection) operation is not commutative.

 $\Pi_{a_1}(\Pi_{a_2}(R)) = \Pi_{a_1}(R)$ if and only if a_1 is substring (or subset) of a_2 , otherwise operation would be incorrect.

7. (d)

The given locking protocol follows the properties of strict 2 PL which is conflict serializable, recoverable and avoid cascading rollbacks.

8. (c)

Candidate keys for the relation are: PQ, QS and QR

 $S \rightarrow P$, prime attribute \rightarrow prime attribute (not allowed in BCNF but allowed in 3NF).

 \Rightarrow Relation *R* is in 3NF but not in BCNF since $S \rightarrow P$ does have a superkey on the left hand side.

9. (c)

The precedence graph of the given schedule is

Therefore schedule is equivalent to (T_1, T_4, T_3, T_2) , (T_1, T_3, T_4, T_2) and (T_4, T_3, T_1, T_2) .

10. (d)

Disk block size = 5000 records

Block size = 10 records or 15 (keys + Pointers)

Sparse index at 1st level. So number of disk block at 1st level is number of block in database.

Data base =
$$\frac{5000}{10}$$
 = 500 blocks
1st level = $\left\lceil \frac{500}{15} \right\rceil$ = $\left\lceil 33.33 \right\rceil$ = 34 blocks
2nd level = $\left\lceil \frac{34}{15} \right\rceil$ = $\left\lceil 2.26 \right\rceil$ = 3 blocks
3rd level = 1 block
Total = $\left\lceil 500 + 34 + 3 + 1 \right\rceil$ blocks
= 538 blocks

11. (b)

Τ ₁	<i>T</i> ₂	<i>T</i> ₃	(i) Conflict serializable
X(B) W ₁ (B) X(C) W(C) S(A) U(A) S(B) R(A) U(B) C ₁	$S(A) \\ R_2(A) \\ R_2(B) \\ R_2(B) \\ U(A)U(B) \\ C_2$	S(B) R ₃ (B) X(A) W ₃ (A) U(B)U(A) C ₃	(<i>ii</i>) Allowed by 2PL. (<i>iii</i>) Not strict recoverable. (<i>iv</i>) No allowed by strict 2PL.

12. (c)

If relation *R* in 3NF but not BCNF then atleast two compound keys must exists where non-trivial FD with determinant not superkey.

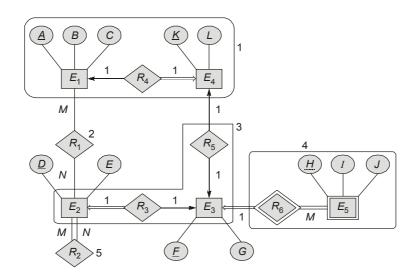
India's Best Institute for IES, GATE & PSUs

13. (c)

The given relation with functional dependencies is in 3NF i.e., no transitive and partial function dependency exist but $C \rightarrow A$, violets BCNF i.e., super key \rightarrow any attributes. So, relation *R* in 3NF but not BCNF. (d) $\{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, BE \rightarrow C, EC \rightarrow A, CF \rightarrow B, D \rightarrow E\}$

14. (b)

$[AB \rightarrow C]$		$[AB \rightarrow C]$		$[AB \rightarrow C]$
$C \rightarrow A$		$C \rightarrow A$		$C \rightarrow A$
BC ightarrow D		$BC \rightarrow D$		BC ightarrow D
$ACD \rightarrow B$	After	$CD \rightarrow B$	After	BE ightarrow C
$\textit{BE} \rightarrow \textit{C}$	removal of	$\textit{BE} \rightarrow \textit{C}$	removal of	$\textit{EC} \rightarrow \textit{F}$
$\textit{EC} \rightarrow \textit{F}$	extraneous	$\textit{EC} \rightarrow \textit{F}$	redundant	$\textit{CF} \rightarrow \textit{B}$
$EC \rightarrow A$	attributes	$EC \rightarrow A$	FD's	$D \rightarrow E$]
$\textit{CF} \rightarrow \textit{B}$		$\textit{CF} \rightarrow \textit{B}$		Minimal
$\textit{CF} \rightarrow \textit{D}$		$\textit{CF} \rightarrow \textit{D}$		cover
$D \rightarrow E$]		$D \rightarrow E$]		

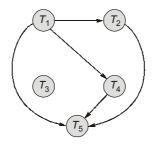

15. (a)

Condition $X = X_1$ and $Y \neq Y_1$ says that vertices whose starting vertex is same but end vertices is different, which returns vertices whose out degree is at least 2.

16. (a)

- Q_1 :Retrieves A which are more than some C.
- Q_2 :Retrieves A which are more than some C.
- Q3 :Retrieves A which are more than every C.

17. (b)


18. (a)

Order P:

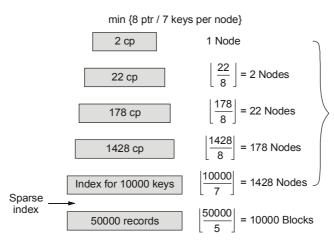
 $P \times \text{Pointer} + (P - 1) \times \text{Key} \leq \text{Block}$ $P \times 8 + (P - 1) \ 12 \leq 1000$ $20 \ P \leq 1012$ $P = \left| \frac{1012}{20} \right| = 50$

Level	Min nodes	Min B _P	Min keys	
1	1	2	1	
2	2	2 × 25	24	
3	50	_	50 × 24	
			1200	

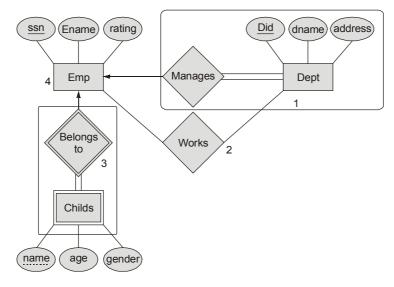
19. (a)

of serial schedules conflict equal to schedule (S) is # of topological orders

$$T_{1} \underbrace{T_{2} - T_{4} - T_{5}}_{T_{4} - T_{2} - T_{5}} \right\} 2 \text{ sequences for } T_{1} T_{2} T_{4} T_{5}$$


 ${\it T}_{\rm 3}$ can be any where in both sequences. Total 10 topological order.

20. (b)


Order $P \Rightarrow P \times B_P + (P-1)$ Key \leq Block $P \times 12 + (P-1) 20 \leq 512$ $32 P \leq 532$

$$P = \left\lfloor \frac{532}{32} \right\rfloor = 16$$

Maximum index nodes in index mean min fill factor

21. (d)

Emp (<u>ssn</u>, Ename, rating) Dept_manages (<u>did</u>, dname, address, ssn) Works (<u>ssn did</u>) Childs belongs to (<u>ssn name</u>, age, gender)

22. (a)

- Only serial schedules $T_1 \rightarrow T_2$, $T_2 \rightarrow T_1$ are conflict serializable.
- None of non serial schedules are conflict serializable.

23. (b)

$${}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} = 26$$

24. (b)

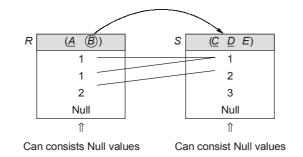
The output Table will be

Dealer-No.	Color-id		
D ₂	C ₂		
D ₇	<i>C</i> ₃		
D ₂	<i>C</i> ₅		
D ₇	<i>C</i> ₆		

25. (a)

Block factor of database =
$$\frac{512}{16} = 32$$

Number of block in database =
$$\frac{8192}{32} = 256$$


In first level entry for each record,

Number of blocks in first level =
$$\frac{\text{Number of Database Block}}{\text{Entry size of 1st level}} = \left\lfloor \frac{256}{32} \right\rfloor = 8$$

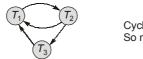
In second level

Number of blocks in second level =
$$\frac{\text{Number of 1st level Block}}{\text{Entry size of 2nd level}} = \left[\frac{8}{32}\right] = 1$$

26. (b)

Null value of *B* column record not references to any record of *S*. Remaining records of *R* references to atmost one record of *S*.

27. (c)


 $\{t \mid \exists r \in \text{student } (r[\text{ID}] = t[\text{ID}]) \land (\forall u \in \text{course } (u[\text{dept_name}] = \text{``CS''} \Rightarrow \exists s \in \text{takes } (t[\text{ID}] = s[\text{ID}] \land s[\text{course_id}] = u[\text{course_id}])\}$ will results all students who have taken all courses offered in the CS department. Since we know that $P \Rightarrow Q \equiv \text{not } P \lor Q$, so option (b) is also true.

28. (a)

In wait-die scheme, when transaction T_i request a data items currently held by T_j , T_i is allowed to wait only if it has a time stamp smaller then that of T_j otherwise T_i is rolled back (die). Here process P is running so it has time stamp less than process Q now if process P need a resource held by process Q then process P has to wait.

29. (d)

Checking for conflict serializable:

Cycle is present So not conflict serialiazable

Since their is blind write between $W_2(a)$ to $W_3(a)$, so it may be view serializable. Checking for view serializability:

- 1. Final write: $a = T_1, b = T_3$ (1)2. Initial read: $a = T_1, T_2 b = T_3, c = T_1$ (2)3. Write read: No write read $(T_2, T_3) \rightarrow T_1$ from (1)
 - $\begin{array}{ccc} (T_2, T_3) \rightarrow T_1 & \text{from (1)} \\ T_1 \rightarrow T_2, T_3 & \text{from (2)} \end{array}$

Both at a time not possible, so not view serializable.

30. (b)

If we insert keys 45,48,55 in same order, then on insertion of key 55, root will be overflow and new level will be created.