- C	LASS -	TES	бт —			S.No.	: 01 SP_ I	ME_ABC_	091021										
MADE EASY																			
India's Best Institute for IES, GATE & PSUs																			
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna																			
Web: www.madeeasy.in E-mail: info@madeeasy.in Ph: 011-45124612																			
CLASS TEST																			
	M	ECI	HAN	ICAL	EN	GINE	ERIN	G											
	M	ECI				GINEI 10/2021		G											
	M	ECI						G											
ANS	SWER KEY		Date		:09/1			G											
AN 1.			Date	of Test	:09/1			G 25.	(b)										
	SWER KEY	>	Date Mater	of Test	:09/1	0/2021			(b) (c)										
1.	SWER KEY	7.	Materi (b)	of Test ial Scien	:09/1 ce (b)	19.	(b)	25.											
1. 2.	(d)	> 7. 8.	Date Materi (b) (a)	of Test ial Scien 13. 14.	ce (b) (b)	19. 20.	(b) (b)	25. 26.	(c)										
1. 2. 3.	SWER KEY (d) (d) (d)	> 7. 8. 9.	Date Mater (b) (a) (d)	of Test ial Scien 13. 14. 15.	ce (b) (b) (b)	19. 20. 21.	(b) (b) (b)	25. 26. 27.	(c) (d)										

MADE ERSY

DETAILED EXPLANATIONS

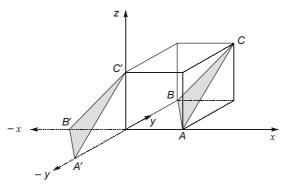
1. (d)

For a ternary system, at constant pressure i.e. N= 1 Gibbs phase rule P

Maximum no. of phases, P = 4

$$+F = C + N$$

 $+F = 3 + 1$
 $P = 4 = 5$


Ρ

 \Rightarrow lf

F = 0 then number of phases will be maximum.

(As ternary system = C = 3)

2. (d)

Planes ABC and A' B' C' are same and plane A' B' C' is obtained by shifting ABC plane to (-1, -1, 1)co-ordinate which gives miller indices $(\overline{1} \ \overline{1} \ 1)$.

4. (c)

In martemperting, steel is heated below the lower critical temperature and is about 600°C.

5. (b)

$$\sigma_{T} = \sigma_{0}(1 + e)$$

= 300(1.35) = 405 MPa

7. (b)

Solubility of carbon in austenite is 2%.

10. (b)

In the face centred modification of iron is called austenite or γ -iron. It is the stable form of pure iron at temperatures between 910°C & 1400°C.

11. (a)

Alloy containing 0.8% of Carbon - eutectoid steel Alloy containing less than 0.8% of Carbon - Hypo eutectoid steel Alloy containing more than 0.8% Carbon - Hyper eutectoid steel.

12. (d)

$Cr \rightarrow$	Increases corrosion resistance
$\text{Co} \rightarrow$	Increases Toughness
$\text{Mn} \rightarrow$	Increases Abrasion resistance
$\text{Mo} \rightarrow$	Increases Creep resistance

13. (b)

% change in density = % change in atomic packing factor

$$= \frac{0.74 - 0.68}{0.68} = 8.8\%$$

17. (d)

Staking faults is a surface defect.

18. (c)

$$L \xrightarrow{1150^{\circ}C}_{4.3\%C} \gamma + Fe_3C \text{ [Eutectic reaction]}$$

19. (b)

Addition of vanadium to steel increases hardenability.

22. (c)

Aluminium has FCC structure,

$$\therefore \qquad \text{for FCC, } a = \frac{4r}{\sqrt{2}}$$
$$\frac{a}{r} = \frac{4}{\sqrt{2}} = 2.828$$

23. (a)

Hadfield steel is used for making jaw crusher plate. Its composition is C 1.1 to 1.4%, Mn 11 to 14%, Rest Fe.

24. (d)

For FCC material:

Material	Slip plane	Slip direction	No. of slip system
Cu, Al, Ni, Ag, Au	{111}	< 110 >	12

25. (b)

In screw dislocation motion of dislocation is referred as climb and in edge dislocation movement of dislocation is referred as glide.

In edge dislocation Burger vector is perpendicular to the dislocation line while in screw dislocation Burger vector is parallel to the dislocation line.

Unit plastic deformation is called slip and it always appear in the direction of applied load. Direction of slip is represented by Burger vector.

26. (c)

Cu and Ni are completely soluble in the liquid as well as in solid state.

Ag + Cu and Pb + Sn \rightarrow These are partially soluble in solid state but fully soluble in liquid state.

India's Best Institute for IES, GATE & PSUs

27. (d)

X-ray wavelength = λ Reflection angle, θ = 8° for n = 1 Interplanar distance, $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ $d_{200} = \frac{a}{\sqrt{2^2 + 0^2 + 0^2}}$ $d_{200} = \frac{a}{2}$

As per Bragg's law,

$$2d\sin\theta = n\lambda$$
$$2\times \left(\frac{a}{2}\right) \times \sin^{2}\theta = 1 \times \lambda$$
$$a = \frac{\lambda}{\sin^{2}\theta} = 7.1853\lambda$$

So, lattice parameter, $a = 7.1853\lambda$

28. (d)

In 100 atoms of Cu-Ni alloy, there are 64 atoms of Cu and 36 atoms of Ni.

Weight of 64 copper atoms = $\frac{64 \times 63.55}{6.023 \times 10^{23}}$ gram = 6.75278 × 10⁻²¹ gram

Weight of 36 nickel atoms = $\frac{36 \times 58.69}{6.023 \times 10^{23}}$ gram = 3.507953 × 10⁻²¹ gram

Weight fraction of copper = $\frac{W_{Cu}}{W_{Cu} + W_{Ni}} = \frac{6.75278 \times 10^{-21}}{6.75278 \times 10^{-21} + 3.507953 \times 10^{-21}}$ = 0.65812

Weight fraction of copper = 65.81%

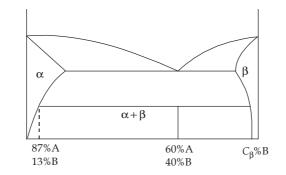
29. (a)

1. Eutectic reaction:

$$L \xrightarrow{1150^{\circ}\text{C}} \underline{\gamma - \text{iron} + \text{Fe}_3\text{C}}_{\text{Ledeburite}}$$

2. Eutectoid reaction:

$$\gamma - \text{iron} \xrightarrow{725^{\circ}\text{C}}_{0.8\% \text{ C}} \underbrace{\alpha - \text{iron} + \text{Fe}_3\text{C}}_{\text{Pearlite}}$$


Pealite is having plate like structure of α -iron and Fe₃C. It is phase mixture of α -iron and Fe₃C. It is mainly produced by diffusion.

3. Peritectic reaction:

$$\underbrace{\underbrace{\delta-\text{iron}}_{\text{Solid}} + \underbrace{L}_{\text{Liquid}} \xrightarrow{\underbrace{1493^\circ\text{C}}_{0.18\%\text{ C}}} \underbrace{\gamma-\text{iron}}_{\text{solid}}$$

© Copyright: **MADE EASY**

30. (d)

Given:

 $C_o = 66\% \alpha$ -phase + 34% β -phase

We know that,

$$W_{\alpha} = \frac{C_{\beta} - C_{0}}{C_{\beta} - C_{\alpha}}$$

$$0.66 = \frac{C_{\beta} - 0.40}{C_{\beta} - C_{\alpha}} \qquad \dots(i)$$

$$W_{\beta} = \frac{C_{0} - C_{\alpha}}{C_{\beta} - C_{\alpha}}$$

$$0.34 = \frac{0.40 - 0.13}{C_{\beta} - C_{\alpha}} \qquad \dots(ii)$$

Now eq. (i) ÷ (ii):

$$\frac{0.66}{0.34} = \frac{C_{\beta} - 0.40}{0.27}$$

Composition of *B* is, $C_{\beta} = (0.92411) = 92.411 \text{ wt\%B}$ Composition of *A* in β -phase = 100 - 92.411 Composition of β -phase = 7.589 \simeq 7.59 wt% A