

1.	(a)	7.	(c)	13.	(b)	19.	(c)	25.	(c)
2.	(c)	8.	(b)	14.	(c)	20.	(c)	26.	(a)
3.	(a)	9.	(b)	15.	(b)	21.	(d)	27.	(d)
4.	(c)	10.	(d)	16.	(d)	22.	(a)	28.	(b)
5.	(b)	11.	(c)	17.	(b)	23.	(a)	29.	(a)
6.	(a)	12.	(d)	18.	(a)	24.	(d)	30.	(b)

2. (c)

TRAP is also called as RST 4.5

st Institute for IES. G

Vector address =
$$(4.5 \times 8)_{10} = (36)_{10} = (24)_{H}$$

= $(0024)_{H}$.

TRAP is a positive edge triggered and level triggered interrupt. RST 6.5 is a level triggered interrupt with third highest priority. INTR is a level triggered interrupt.

3. (a)

4. (c)

RM is conditional return instruction. When sign flag is set RM is executed with three machine cycles and 12 T-states.

5. (b)

Memory chip has 10 address lines and 8 data lines. As control enable is active low and given to NAND gate output. For chip to be enabled A_{15} , A_{14} , A_{13} , A_{12} , A_{11} and A_{10} has to be ones.

A_{15}	A_{14}	A_{13}	A_{12}	$A_{\scriptscriptstyle 11}$	A_{10}	A ₉	A_8	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Address
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	(FC00) _H
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	1	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	(FFFF) _H

7. (c)

Here register C acts as counter and is loaded with 7. Loop is executed 7-times. Total T-states = 7 T + 7(4 T) + 6(10 T) + 7 T = 102 T-states

8. (b)

PSW register can be seen as accumulator register with flag register.

PSW = Accumulator + SZXACXPXCY

contents of register B are added to register A and the result is stored in register A. Here the flags get affected as ADD is an arithmetic instruction.

∴ PSW = 000000001X1X1X1 'X' is a don't care bit

PSW = 000000001110101

9. (b)

When XRA instruction is executed Sign, Zero, Parity flags are modified to reflect the result of operation with Carry and Auxiliary flags being reset.

8 Electrical Engineering

10. (d)

Total five memory accesses are involved when the instruction LHLD 2000 is executed by the microprocessor one Op-code fetch cycle and four memory read cycles.

11. (c)

6000 : LXI SP, 1000H// SP is loaded with 1000 H										
6003 : PUSH B	// Contents of BC are pushed into stack and SP = SP $- 2 = 0$ FFE									
6004 : PUSH D	// Contents of DE are pushed into stack and SP = SP $- 2 = 0$ FFC									
6005 : CALL 2500	// Call the subroutine at 2500 H and push the content of program counter in									
	stack, so SP = SP $- 2 = 0$ FFC $- 2 = 0$ FFA									
6008 : POP B	// Contents of top of stack are loaded in BC pair									
	and $SP = SP + 2 = 0FFA + 2 = 0FFC$									
6009 : HLT	// Halt the program									
After HLT instructio	n is executed PC is stored with 600A and stack pointer with 0FFC									

12. (d)

LDA 7500 H // Load the contents in location 7500 H to accumulator

Contents in location 7500 H are two's complemented.

13. (b)

Intel 8237 \rightarrow DMA controller Intel 8279 \rightarrow Display interface Intel 8259 \rightarrow Programmable interrupt controller Intel 8155 \rightarrow Input Output and timer

14. (c)

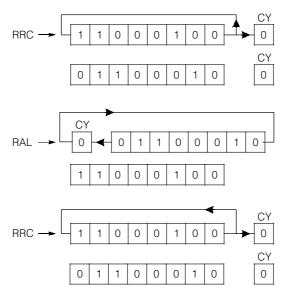
```
\begin{array}{ll} \mathsf{MVI}\ \mathsf{C},\ 73\ \mathsf{H} & ;\ \mathsf{C}\leftarrow73\ \mathsf{H} \\ \mathsf{MVI}\ \mathsf{B},\ 57\ \mathsf{H} & ;\ \mathsf{B}\leftarrow57\ \mathsf{H} \\ \mathsf{MOV}\ \mathsf{A},\ \mathsf{C} & ;\ \mathsf{A}\leftarrow\mathsf{C} \\ \mathsf{MOV}\ \mathsf{A},\ \mathsf{B} & ;\ \mathsf{A}\leftarrow\mathsf{B} \\ \mathsf{MOV}\ \mathsf{C},\ \mathsf{A} & ;\ \mathsf{C}\leftarrow\mathsf{A} \\ \mathsf{MVI}\ \mathsf{D},\ 37\ \mathsf{H} & ;\ \mathsf{D}\leftarrow37\ \mathsf{H} \\ \mathsf{OUT}\ \mathsf{PORT}\ \mathsf{1} & ;\ \mathsf{PORT}\ \mathsf{1}\leftarrow57\ \mathsf{H} \\ \mathsf{HLT} & ;\ \mathsf{Halt} \end{array}
```

57 H goes out from the microprocessor accumulator to PORT 1

15. (b)

SPHL ; Load contents of HL into stack pointer. This is a one Byte instruction that needs 6 T-states to execute fully.

16. (d)

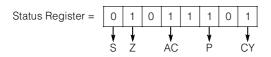

Effective memory access time = [Hit ratio × access time in cache memory

+ (1 – Hit ratio) × access time in main memory] = 0.8 × 10 ns + (1 – 0.8) × 100 ns = 8 ns + 20 ns = 28 ns

17. (b)

at Institute for IES. GATE & I

Accumulator is initially loaded with C4 H. Instruction ORA A resets the carry flag


Contents of accumulator are 62 H.

18. (a)

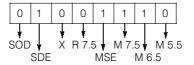
LXI SP, 9000; SP \leftarrow 9000LXI H, 005D; HL \leftarrow 005DPUSH H; SP = SP - 2 = 8FFEPOP PSW; Pop the contents 005D onto PSW register.

PSW = accumulator + status register

$$PSW = 005D$$

19. (c)

The loop is executed four times adding the contents of accumulator with decremented contents of register B.


A = 04 + 04 + 03 + 02 + 01 + 02 $A = (16)_{10}$ $A = (10)_{H}$

20. (c)

Vector address = $(5 \times 8)_{10} = (40)_{10} = (28)_{H}$

21. (d)

After executing SIM instruction, accumulator set-up for the SIM instruction is shown as

As MSE is enabled, M 7.5 and M 6.5 are masked.

22. (a)		
	MVI B, 00 H	; Load contents 00 into register B
	MVI C, 08 H	; Load contents 08 into register C
	MOV A, D	; Move the contents of register D to register A
BACK:	RAR	; Rotate accumulator contents right with carry flag
	JNC SKIP	; If $CY = 0$, move the sequence to SKIP
	JNR B	; If CY = 1, Increment counter B
SKIP:	DCRC	; Decrement contents of C by one
	JNZ BACK	; If $z = 0$ jump sequence to BACK else Halt
	HLT	; Halt, buses tristated

Clearly we can notice contents of register D are taken to A to number of ones. The number of ones are stored in count register B.

23. (a)

MVI A, 27 H	; A ← 27 H
ADD A	; A ← 27 H + 27 H, A ← 4E H ; CY = 0, P =1
LXI SP, 2700 H	; SP ← 2700 H
PUSH PSW	; A and flags register contents are stored in 26FF H and 26FF H locations
POP H	; Retrieve flags in L
MOV A, L	; Flags in accumulator
CMA	; Complement accumulator, $CY = 1$, $P = 0$
MOV L, A	; Accumulator in L
PUSH H	; Save on stack
POP PSW	; Back to flag register
HLT	; Terminate program execution.

The program complements the flags.

24. (d)

HLT is a 1 Byte instruction with 5 T-states or more.

25. (c)

Analysis of code:	
LXI H, 2200 H	; Initialize pointer
MOV A, M	; Get the number 45 H
INX H	; Increment the pointer
ADD M	; Add 45 H and 46 H
DAA	; Convent HEX to valid BCD ; A \leftarrow 91 H
STA 2300 H	; Store the result
HLT	; Terminate program execution

26. (a)

The code performs 2's complement of an 8-bit number. 87 H is loaded in accumulator and is complemented. Contents are incremented by one. The result [2's complement] is stored in C051 H location.

27. (d)

 $\begin{array}{c} A \leftarrow (A7)_{H} \\ A \rightarrow 10100111 \\ A \rightarrow 10100111 \\ \end{array}$ Bitwise or $\rightarrow 10100111$

after ORA A instruction is executed sign flag is set.

made I

et Institute

sequence jumps to OUTPRT

 $\overline{A} \rightarrow 01011000$

 $\overline{A} + 1 \rightarrow 01011001$

Finally (59)_H is displayed at Port 01 H.

28. (b)

 $\begin{array}{ll} \mathsf{MVI}\ \mathsf{B},\ 33\ \mathsf{H} & ;\ \mathsf{B}\leftarrow 33\ \mathsf{H} \\ \mathsf{MVI}\ \mathsf{C},\ 40\ \mathsf{H} & ;\ \mathsf{C}\leftarrow 40\ \mathsf{H} \\ \mathsf{PUSH}\ \mathsf{B} & ;\ \mathsf{PUSH}\ \mathsf{the}\ \mathsf{contents}\ \mathsf{of}\ \mathsf{BC}\ \mathsf{pair}\ \mathsf{on}\ \mathsf{to}\ \mathsf{stack} \\ \mathsf{POP}\ \mathsf{H} & ;\ \mathsf{POP}\ \mathsf{the}\ \mathsf{contents}\ \mathsf{of}\ \mathsf{stack}\ \mathsf{into}\ \mathsf{HL}\ \mathsf{pair} \\ \mathsf{SHLD}\ \mathsf{C050} & ;\ \mathsf{Contents}\ \mathsf{of}\ \mathsf{HL}\ \mathsf{are}\ \mathsf{stored}\ \mathsf{in}\ \mathsf{locations}\ \mathsf{C050}\ \mathsf{and}\ \mathsf{C051}\ \mathsf{respectively} \\ \mathsf{HLT} & ;\ \mathsf{Halt} \end{array}$

Finally the contents of C050 are 40 H and C051 are 33 H respectively.

29. (a)

Size of one memory chip = 256×1 bits Required memory size = 1 kB

Total chips required =
$$\frac{1024 \times 8 \text{ bits}}{256 \times 1 \text{ bits}} = 32$$

30. (b)

A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A_9	<i>A</i> ₈	A ₇	A_6	A_5	A_4	A ₃	A_2	<i>A</i> ₁	A_0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1

8000 H - 87FF H