

					S.No. : 0	1 ND_I	EC+EE_NW_	_230220
						Digital	Electronics	
						E	C EE	
	Ir	ndia's Bes	DE st Institut	e for IE	S, GATE & P	SUs		
Delhi Noida Bhopa	al Hyd	erabad J	aipur Lucl	know I	ndore Pune	Bhuba	neswar Kolk	ata Patna
Web	: www.m	adeeasy.in	E-mail:	info@ma	deeasy.in F	°h: 011-4	15124612	
	_							
	ſ		459	ר . ר	TES	Т		
		$\mathcal{P}_{\mathcal{P}}$		ے م		''' 1		
		20	120	- 6	202	I		
			FC		F			
					L	_		
		Date	of Test	::23/	02/202	C		
ANSWER KEY	>	Digita	al Electro	onics				
1. (d)	7.	(a)	13.	(b)	19.	(b)	25.	(a)
2. (d)	8.	(d)	14.	(b)	20.	(b)	26.	(b)
3. (b)	9.	(a)	15.	(d)	21.	(b)	27.	(a)
4. (d)	10.	(a)	16.	(b)	22.	(c)	28.	(a)
5. (c)	11.	(b)	17.	(a)	23.	(d)	29.	(d)
6. (c)	12.	(c)	18.	(a)	24.	(d)	30.	(c)

12 | EC | EE

DETAILED EXPLANATIONS

1. (d)

From the decoder circuit it is clear that

$$f(A, B, C) = I_2 + I_4 + I_6$$

now,

	Input Literals		Minterm at the output
<i>I</i> ₂	010	Ā C B	$(\overline{A}\ \overline{B}\ C) \Longrightarrow m_1$
<i>I</i> ₄	100	ACB	$(A \ \overline{B} \ \overline{C}) \Longrightarrow m_4$
<i>I</i> ₆	110	ACB	$(A \overline{B} C) \Longrightarrow m_5$

$$\therefore \qquad f(A, B, C) = \Sigma m(1, 4, 5)$$

2. (d)

The K-map of Q^+ can be given as follows:

ABC	2 00	01	11	10	
0	0	0	0	0	
1	1	1	0	1	

:.

$$Q^+ = A\overline{B} + A\overline{Q}$$

3. (b)

For six states, we require minimum 3 number of flip-flops. i.e. $2^n \ge MOD$

$$2^n \ge MOD$$

 $2^n \ge 6$
 $n_{min} = 3$

4. (d)

Thus this will create a MOD 8 or 3 bit down counter.

5. (c)

$$f_{out} = \frac{f_{in}}{MOD (total)}$$
$$MOD = \frac{f_{n}}{f_{out}} = 5 \times 10 \times 2x \times 4$$

x = 4 flip-flops

 $x = \frac{1}{400} \times \frac{1.6 \times 10^9}{1 \times 10^6} = \frac{1600}{400}$

6. (c)

 \because The logic will perform the function of positive AND gate. Since,

A (Volt)	B (Volt)	<i>T</i> ₁	<i>T</i> ₂	T ₃	Output
<i>V</i> ⁻	V-	OFF	OFF	ON	$V_{\rm sat}$
<i>V</i> [−]	V^+	OFF	ON	ON	$V_{\rm sat}$
V^+	V [−]	ON	OFF	ON	$V_{\rm sat}$
V^+	V^+	ON	ON	OFF	V_{CC}

The corresponding truth table for negative logic:

A	В	Output
1	1	1
1	0	1
0	1	1
0	0	0

Thus the circuit will behave as negative OR-logic.

7. (a)

The output logic function of the given circuit can be expressed as,

$$f = \overline{\left(\overline{(\overline{AB})C}\right)\left(\overline{\overline{C}D}\right)} = (\overline{AB})C + \overline{C}D = (\overline{A} + \overline{B})C + \overline{C}D$$

$$I_R = I_3 + I_2 + I_0$$

= $\left(\frac{E_{\text{reff}}}{2R} + \frac{E_{\text{reff}}}{4R} + \frac{E_{\text{reff}}}{16R}\right) = \left(\frac{10}{10} + \frac{10}{20} + \frac{10}{80}\right)$
= $\frac{130}{80} = \frac{13}{8} = 1.625 \text{ mA}$

9. (a)

V_1	V_2	Y	M_1	M_2	M_3	<i>M</i> ₄
0	0	V_{DD}	OFF	OFF	ON	ON
0	V_{DD}	0	OFF	ON	OFF	ON
V_{DD}	0	0	ON	OFF	ON	OFF
V_{DD}	V_{DD}	0	ON	ON	OFF	OFF

Thus, the gate will be a positive NOR gate.

10. (a)

$$t_{\text{max}} = 2^{n+1} T_{\text{clock}} = 2^9 T_{\text{clock}}$$
$$R_{\text{min}} = \frac{1}{t_{\text{max}}} = \frac{1}{2^9 T_{\text{clock}}} = \frac{f_{\text{clock}}}{2^9} = \frac{50000}{512} = 97.65 \text{ Hz}$$

11. (b)

The above circuit can be redrawn as

12. (c)

Thus,

The circuit can be designed by using a NAND gate which can be equally represented by an AND gate followed by not gate.

: The clear should be on the 6th pulse. i.e., when the output $(Q_2Q_1Q_0) = (110)$. So, the combinational circuit is as follows:

13. (b)

To find the essential prime implicants, we have to select those groups in which there is atleast one min-term which is part of only that group and cannot be grouped by any other way.

So, there are 4 prime implicants in the given K-map.

14. (b)

The 4-bit parallel adder can be analyzed as follows:

Thus, the last sum bit will be generated in 50 nsec. Thus, the maximum rate of 4-bit additions possible is,

$$\frac{1}{50 \times 10^{-9}} / \text{sec} = \frac{10^9}{50} / \text{sec} = 20 \times 10^6 / \text{sec}$$

15. (d)

$$f_1(A,B,C) = \Sigma m(2, 3, 4) f_2(A,B,C) = \Sigma m(2, 3, 4)$$

for output f_{out} to be zero, f_3 should be equal to $\therefore \qquad f_3(A,B,C) = \Sigma m(0, 1, 5, 6, 7)$ Hence, the maximum number of possible minterms = 5.

16. (b)

The given circuit represents a 3-bit counter. So the count can be represented as

Clk	Q_2	Q_1	Q_0	
Initially	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	-
4	1	0	0	-
5	1	0	1	\Rightarrow 5th clock pulse
6	1	1	0	
7	1	1	1	

 $Y = Q_2 \oplus Q_1 \oplus Q_0$

$$= 1 \oplus 0 \oplus 1 = 0$$

17. (a)

...

·.·

 $Q + \overline{Q} = 1$ always, thus the flip-flop will toggle always.

:.
$$f_{out} = \frac{f_{clk}}{2} = \frac{10}{2} \times 10^3 = 5 \text{ kHz}$$

18. (a)

At first cycle, the inputs of flip-flop are

$$J_2K_2 = 10 \text{ (Set)}$$

$$J_1K_1 = 01 \text{ (Reset)}$$

$$J_0K_0 = 01 \text{ (Reset)}$$

$$Q_2 = 1$$

$$Q_1 = 0$$

$$Q_0 = 0$$

$$\therefore \text{ Output } (Q_2Q_1Q_0) = (100)_2$$

19. (b)

The state diagram can be drawn as

Hence, minimum number of states = 4.

20. (b)

Initially the input at 'D' will be B_7 and the signal X is '0' Therefore $B_0 = B_7 \oplus 0$ For the next clock pulse $D = B_6$ $X = B_7$ \therefore $B_0 = B_7 \oplus B_6$ and $B_1 = B_7 \oplus 0$ similarly for every clock pulse coch bit of register choice the

similarly for every clock pulse each bit of register shows the Ex-OR combination of binary inputs. Thus, the circuit represents the conversion from binary to Gray code.

21. (b)

Assume the output of both the flip-flops is 0 initially.

Waveforms :

 Q_1

0

0

1

0

0

 Q_0

0

1

1

1

0

22. (c)

Here

	CLK	Q_2
= 1,	Initial state	0
= <i>Q</i> ₂ ,	1	0
$= \overline{Q}_2 \odot Q_2$	2	0
$\mathbf{a}_2 \cup \mathbf{a}_0,$	3	1
= 1,	4	0
$= Q_1$,		I
= 1		

Modulus of the counter is 4.

28 4 115 8 35 32 3 clock pulses

Thus, the count after 115 clock pulses will be $(Q_2Q_1Q_0) = 101$.

 J_0

 K_0

 J_1

 K_1

 J_2 K_2

23. (d)

Since their is no propagation delay, the given circuit can be reduced as,

Now, the waveform at point X can be found out by using EX-NOR operation of A and B. The waveform of f can be drawn by taking AND operation of A and X as follows:

24. (d)

The logic outputs of the OR gates can be given as

$$\begin{split} F_1 &= \Sigma m(0, 1, 2, 4, 6) \\ F_2 &= \Sigma m(0, 3, 6) \\ F_3 &= \Sigma m(0, 4, 6, 7) \end{split}$$

After passing the functions through a NAND gate, we get,

Thus, we require 5 + 2 = 7 gates. 5 for EX-NOR gate and 2 more NAND gates.

25. (a)

$$D_1 = Q_1 Q_0 \odot X$$
$$D_0 = \overline{Q}_1$$
$$Z = Q_0 + X$$

Present State		Input	FF Inputs		Next State		Output
Q ₁	Q ₀	X	<i>D</i> ₁	D ₀	Q ₁ ⁺	Q_0^+	Z
0	0	0	1	1	1	1	1
0	0	1	0	1	0	1	1
0	1	0	1	1	1	1	1
0	1	1	0	1	0	1	1
1	0	0	1	0	1	0	0
1	0	1	0	0	0	0	1
1	1	0	0	0	0	0	0
1	1	1	1	0	1	0	1

The state diagram given in option (a) satisfies this.

26. (b)

$$F = \overline{C}(A + \overline{A}B) + C(\overline{A} + A\overline{B}) = \overline{C}(A + B) + C(\overline{A} + \overline{B})$$
$$= A\overline{C} + B\overline{C} + \overline{A}C + \overline{B}C = (A \oplus C) + (B \oplus C)$$

27. (a)

:..

The given circuit is BCD to Excess-3 code converter with BCD inputs $A_{MSB} B C D_{LSB}$ and Excess-3 code output $W_{MSB} X Y Z_{LSB}$.

Since, each code uses 4-bits to represent a decimal digit. There must be four input variables and four output.

Decimal	In	out		Output			Decimal		
values	A	В	С	D	W	Х	Y	Ζ	values
0	0	0	0	0	0	0	1	1	3
1	0	0	0	1	0	1	0	0	4
2	0	0	1	0	0	1	0	1	5
3	0	0	1	1	0	1	1	0	6
4	0	1	0	0	0	1	1	1	7
5	0	1	0	1	1	0	0	0	8
6	0	1	1	0	1	0	0	1	9
7	0	1	1	1	1	0	1	0	10
8	1	0	0	0	1	0	1	1	11
9	1	0	0	1	1	1	0	0	12

K-map for Y

AB	ĈD	ĒD	CD	CD
ĀĒ	1		1	
ĀВ	1		1	
AB	X	x	x	x
AB	1		x	x

Where, don't care 'X' filled for decimal digits 10 - 15.

$$Y = CD + \overline{C}\overline{D} = C \odot D$$

r = 5

28. (a)

$$2r + 3 + 4r + 4 + r + 4 + 3r + 2 = 2r^{2} + 2r + 3$$
$$10r + 13 = 2r^{2} + 2r + 3$$
$$2r^{2} - 8r - 10 = 0$$
$$r^{2} - 4r - 5 = 0$$
$$r = 5, -1$$

: Radix cannot be negative

...

29. (d)

The accuracy is $\pm 0.1\%$ of full scale, i.e.

Accuracy =
$$\pm \frac{0.1}{100} \times 1.260 \text{ V} = \pm 1.26 \text{ mV}$$

The offset error is = $\pm 1 \text{ mV}$
maximum error = $\pm 1.26 \text{ mV} + \pm 1 \text{ mV}$
= $\pm 2.26 \text{ mV}$

...

30. (c)

Number of states for 8-bit up-counter = $2^8 - 1 = 255$ thus the counter ranges from -0 to 255Hence, to go from $(10101011)_2 = (171)_{10}$ to $(00111010)_2 = (58)_{10}$ The counter has to go initially from 171 to 255 and then from 0 to 58. Hence, from 171 to 255 = 255 - 171 = 84 clock pulse required from 255 to 0 = 1 clock pulse required and from 0 to 58 = 58 clock pulse required \therefore The total number of clock pulse required is = 84 + 1 + 58= 143