

MADE ERSY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

DBMS

COMPUTER SCIENCE & IT

Date of Test: 25/11/2025

ANSWER KEY >

1.	(b)	7.	(b)	13.	(a)	19.	(a)	25.	(c)
2.	(c)	8.	(c)	14.	(c)	20.	(b)	26.	(b)
3.	(d)	9.	(b)	15.	(b)	21.	(b)	27.	(b)
4.	(d)	10.	(d)	16.	(a)	22.	(d)	28.	(c)
5.	(b)	11.	(c)	17.	(d)	23.	(d)	29.	(d)
6.	(a)	12.	(d)	18.	(c)	24.	(a)	30.	(b)

DETAILED EXPLANATIONS

- 1. (b)
 - (1) Entity of E_2 associated with exactly one entity of $E_1 \Rightarrow$ Total participation of E_2 and one on E_1 side.
 - (2) Entity of E_1 associated with at most one entity of $E_2 \Rightarrow$ Partial participation of E_1 and one on E_2 side.
- 2. (c)

$$r \subseteq [(\text{domain } (A) \times \text{domain } (B) \times \text{domain } (C)]$$

 $|r|_{\text{max}} = |\text{dom } (A)| \times |\text{dom } (B)| \times |\text{dom } (C)|$
 $= 4 \times 10 \times 17 = 680$

3. (d)

A is part of every candidate key, so A is fixed.

Now choose attributes from 5 remaining attributes, such that number of candidate keys is maximum, two possibilities, one is select 2 attributes and other is select 3 attributes.

$${}^{5}C_{2} = {}^{5}C_{3} = 10$$

- 4. (d)
- 5. (b)

A domain is defined as the set of all unique values permitted for an attribute. For ex: A domain of date is set of all possible valid date, a domain of integer is all possible whole numbers.

6. (a)

Since,
$$Emp_No \rightarrow Dept_No$$

and $Dept_No \rightarrow Deptname$, Mgr_No
So, $Emp_No \rightarrow \{Deptname, Mgr_No\}$

7. (b)

$${}^{n}C_{n-2} \Rightarrow \frac{n(n-1)(n-2)!}{(n-2)! \times 2} = \frac{n(n-1)}{2}$$
 Candidate keys.

If every (n - 2) attributes are candidate keys

Then every (n-1) and n attributes are also superkeys

Total Super keys =
$${}^{n}C_{n-2} + {}^{n}C_{n-1} + {}^{n}C_{n} = {}^{n}C_{n-2} + n + 1$$

= $\frac{n(n-1)}{2} + n + 1$

- 8. (c)
 - If every attribute is prime then (partial key → non key) and (non key → non key) is not
 possible. So, relation is always in 2NF as well as in 3NF.
 - If every candidate key is simple (having exactly 1 attribute), then (partial key → non key) not possible. Hence, relation is in 2NF.
 - Assume a relation *R* (*ABC*) with following functional dependencies:

$$R$$
 (ABC)

$$\{AB \rightarrow C, C \rightarrow A\}$$

Candidate keys are AB and BC

 $AB \rightarrow C$ is in BCNF but $C \rightarrow A$ not in BCNF.

9. (b)

(Upper query results those marks which are less than atmost 3 marks, i.e. 9.8, 9.7, 9.6) union (This will return empty since no marks greater than query other marks including itself i.e. 9.7 cannot greater than 9.7)

=
$$(9.8, 9.7, 9.6) \cup (\phi)$$

= $9.8, 9.7, 9.6$

- 10. (d)
- 11. (c)

In B^+ tree, leaf nodes are connected as linked list, not in B-tree.

12. (d)

F: AB and AC are candidate keys, and $B \to C$, $DC \to B$ are FDs where LHS is not a key.

G : *A*, *BD*, *CD* are candidate keys.

 $B \rightarrow C$ cannot possible from G.

 $A \rightarrow B$ cannot possible from F.

13. (a)

$$CD \rightarrow C$$
 {reflexivity}

$$C \rightarrow A$$

$$CD \rightarrow A$$
 {transitivity}

- 14. (c)
- 15. (b)

Here, two dirty reads:

(i)
$$W_1(C)$$
; $R_2(C)$

(ii)
$$W_2(B)$$
; $R_4(B)$

If T_1 roll-backed, then T_2 will rollback due to (i).

If T_2 roll-backed, then T_4 will rollback.

16. (a)

For B-tree of order n,

$$n \times (\text{Tree pointer size}) + (n - 1) (\text{Key size} + \text{Data pointer size}) \leq \text{Block size}$$

$$n \times (14) + (n-1)(8+10) \le 1024$$

$$n \times (14 + 18) - 18 \le 1024$$

$$n(32) \le 1024 + 18$$

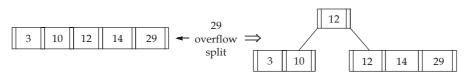
$$n_{\text{max}} = \left| \frac{1042}{32} \right| = 32$$

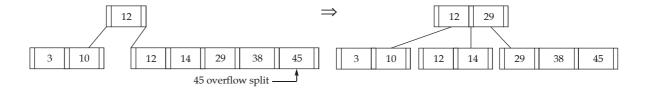
Max data pointer possible = Order - 1

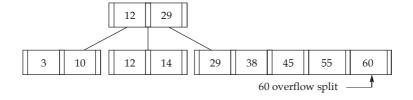
$$= n - 1 = 32 - 1 = 31$$

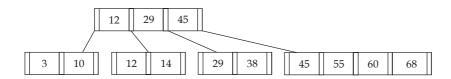
17. (d)

Deadlock possible in 2-PL protocol.

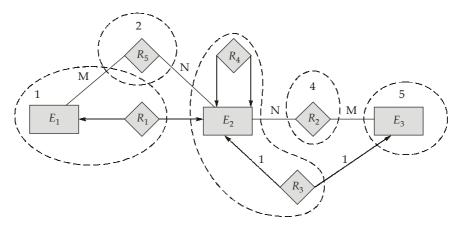

18. (c)


- (a) If $A \subset$ (candidate key), then $A \to B$ is partial dependency, i.e. not 2NF.
- (b) If $A \subset$ (candidate key), then $A \to B$ can create transitive dependency, i.e. not 3NF.
- (c) This situation can possible in 3NF.
- (d) If $A \subset$ (candidate key), and $B \subset$ (candidate key), then not BCNF.


19. (a)

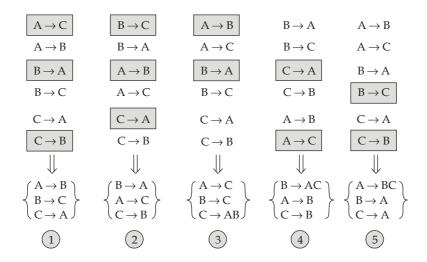

Number of key in internal node = 4 i.e, [5 - 1 = 4]

Number of key in leaf node = 4 i.e., [order = # Key]



So the maximum number of splits of leaf node is 3.

20. (b)



Thus total 5 tables are required.

21. (b)

- Option (b) is correct because
- In option (a) average (amount) is also fetched.
- In option (c) order by is used.
- In option (d) average amount is not there.

22. (d)

23. (d)

Finding key or R.

Since B is a essential attribute:

$$AB^+ \rightarrow ABCD$$

$$BD^+ \rightarrow ABCD$$

$$BC^+ \to BDAC$$

So the set of candidate keys are {AB, BD, BC}.

R is decomposed as:

$$R_1(CD)$$

$$R_2(AC)$$

$$R_3(BC)$$

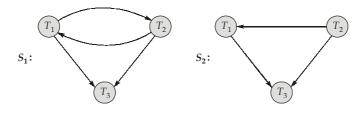
$$\mathsf{C}\to\mathsf{D}$$

$$\mathsf{C}\to\mathsf{A}$$

$$\underline{BC} \rightarrow BC$$
 (Trivial)

Since in all the three relations LHS is key therefore it is in BCNF.

24. (a)


If in 2PL, all exclusive locks are acquired by transactions only in increasing order then, there is a guarantee that atleast 1 process will complete its execution and free the locked data file for the other processes to continue their execution.

25. (c)

For a conflict serializable schedule, the linear ordering of transactions corresponds to topological sorting of the serialization graph. Since there can be multiple such orderings, multiple equivalent serial schedules may exist.

26. (b)

The precedence graph for S_1 contains a cycle, hence not conflict serializable. The precedence graph for S_2 does not contain cycle, hence conflict serializable.

27. (b)

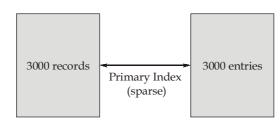
A relation R(A, B, C, D, E) with

$$ABC \rightarrow DE$$

$$ADE \rightarrow BC$$

$$BD \rightarrow E$$

is not in BCNF and all attributes are prime. So, (b) is false.


- (a) Dependency preserving sometimes not possible in BCNF decomposition.
- (c) For only two attributes relation R(A, B) either $A \to B$ or $B \to A$, so it is in BCNF.

28. (c)

In option (b), statement is division operator and it will give correct distinct result. In option (a), here main query select a Sid and check in sub query that for selected Sid is there any course which not enrolled. Here we used, 'distinct' keyword, so it is correct query.

29. (d)

Block factor =
$$\left\lceil \frac{1024}{100} \right\rceil$$
 = 10 Record/block

Number of blocks = 3000

Block factor =
$$\left| \frac{1024}{6+9} \right| = 68$$

Number of blocks =
$$\left\lceil \frac{3000}{68} \right\rceil = 45$$

Number of block access needed = $\lceil \log_2 45 \rceil + 1 = 7$ blocks

30. (b

In general $[R_1\bowtie R_2\bowtie.....\bowtie R_n]\supseteq r$ it can never be $\subset r$, therefore option b is false.