

TADE EASY Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CPMT-PERT

CIVIL ENGINEERING

Date of Test: 07/10/2025

ANSWER KEY >

1.	(a)	7.	(c)	13.	(a)	19.	(a)	25.	(a)
2.	(c)	8.	(d)	14.	(a)	20.	(c)	26.	(b)
3.	(c)	9.	(c)	15.	(d)	21.	(b)	27.	(a)
4.	(d)	10.	(d)	16.	(a)	22.	(c)	28.	(c)
5.	(c)	11.	(d)	17.	(b)	23.	(b)	29.	(d)
6.	(b)	12.	(a)	18.	(c)	24.	(b)	30.	(d)

DETAILED EXPLANATIONS

1. (a)

Only D is predecessor to activity F

2. (c)

Nodes are usually represented by squares or rectangles in AON networks but any other geometrical shape can also be used.

3. (c)

Cost slope =
$$\frac{8600 - 6000}{8 - 3} = 520$$

For duration of 5 days

Direct cost = 6000 + 520 (8 - 5) = ₹7560

5. (c)

Variance,
$$v = \left(\frac{t_p - t_0}{6}\right)^2$$

Here $t_p = 1$ hour = 60 minutes, $t_0 = 5$ minutes

$$v = \left(\frac{60-5}{6}\right)^2 = 84.03 \text{ minutes}$$

6. (b)

Free float is that duration by which an activity can be delayed without delaying any succeeding activity. Interfering float is equal to head event slack.

7. (c)

Correct sequence of analysing a project will be as follows:

- 1. Work break down structure.
- 2. Network diagram.
- 3. Resource allocation and scheduling.
- 4. Project completion time.
- 5. Time cost study.
- 8. (d)

Project duration will be 4T as there are four activities are in series but over all project duration will be 4T $\pm 3\sigma$.

$$\sigma$$
 for entire project = $\sqrt{K^2 + K^2 + K^2 + K^2}$

$$\Rightarrow$$
 $\sigma = 2K$

 \therefore Over all project duration = $4T \pm 6K$

9. (c)

Cost slope =
$$\frac{c_c - c_n}{t_n - t_c}$$

10. (d)

FDB =
$$1 - \left(\frac{c_s}{c_i}\right)^{1/n}$$

= $1 - \left(\frac{2000}{16000}\right)^{1/3} = 0.5$

11. (d)

Cost of machine = ₹100000

Rate of interest, i = 10% = 0.1

Capital recovery factor (CRF) = $\frac{i(1+i)^n}{(1+i)^n - 1}$

$$\Rightarrow \qquad \text{CRF} = \frac{0.1(1+0.1)^{20}}{(1+0.1)^{20}-1} = 0.11746$$

∴ The annual equipment cost = 100000 × 0.11746 = ₹11746

12. (a)

For given network diagram,

Project completion time = 17 weeks

Critical path = 1-3-5-7

Slack of event 4 = 10 weeks

Total float of activity 6 - 7 = 1 week

MADE EASY Leeding Institute for IES, GATE & PSUs

13. (a)

Activity	Expected time (days) $t_E = \frac{t_o + t_p + 4t_m}{6}$	Variance $\sigma^2 = \left(\frac{t_p - t_o}{6}\right)^2$
1-2	7	2.78
1-3	11	2.78
2-4	3	0.11
2-5	1	0
3-4	7	1
4-6	6	1
5-6	8	1

Expected time = 24 days

Critical path = 1-3-4-6

Variance for critical path = 2.78 + 1 + 1 = 4.78

14. (a)

For given project,

Standard deviation $\sigma = \sqrt{9} = 3$ days

Probability factor for
$$T_S = 25$$
, $Z = \frac{25 - 28}{3} = -1$

Probability of completion within 25 days

$$= 100 - 84 = 16\%$$

For probability of completion after 31 days

Probability factor,
$$Z = \frac{31-28}{3} = 1$$

Probability of completion = 100 - 84 = 16%

Total probability = 16 + 16 = 32%

15. (d)

During crashing of an activity, the duration of activity is reduced due to which:

- 1. Indirect cost decreases.
- 2. Direct cost increases.

16. (a)

Activity	Crash limit (days)	Cost Slope (₹/day)
А	4 - 3 = 1	(105-80)/(4-3)=25
В	6 - 4 = 2	(250-180)/(6-4)=35
С	8 - 5 = 3	(320-200)/(8-5)=40
D	10 - 6 = 4	(530-350)/(10-6)=45

Activity Critical

C

D

Since the critical activity *B* has the lowest crash cost per day, it should be crashed first. Hence, crash activity B by 2 days

В

Critical path is still B-C-D

Project completion time = 22 days

Project cost = 810 + (2) (35) = ₹880

17. (b)

Network diagram,

For activity 3-4,

$$EST = 11$$

$$EFT = 11 + 10 = 21$$

$$LFT = 34$$

Total float = 34 - 21 = 13 days

For activity 3-6,

$$EST = 11$$

$$EFT = 11 + 15 = 26$$

$$LFT = 35$$

Total float = 35 - 26 = 9 days

Sum of total float = 13 + 9 = 22 days

18. (c

For the given project, available paths are:

Available paths

- (i) $1-2-3-5-6 \Rightarrow \text{Time duration} = 18 \text{ days}$
- (ii) $1-2-4-5-6 \Rightarrow \text{Time duration} = 18 \text{ days}$

So both paths are critical.

Combination of activities to crash the path, and their respectively cost slopes are given below:

- (i) only *A* → ₹ 600/day
- (ii) only *F* → ₹700/day
- (iii) B and C \rightarrow 200 + 300 = ₹ 500/day
- (iv) B and E \rightarrow 200 + 200 = ₹ 400/day
- (v) D and C \rightarrow 300 + 300 = ₹ 600/day
- (vi) D and E \rightarrow 300 + 200 = ₹ 500/day

So we will crash that combination of activity for which slope is minimum i.e. *B* and *E*.

19. (a)

Path available	Duration (days)	Standard deviation (days)
1-2-4-6	5 + 8 + 17 = 30	
1-2-4-5-6	5 + 8 + 5 + 18 = 36	2.345
1-2-5-6	5 + 13 + 18 = 36	2.69
1-3-5-6	4 + 11 + 18 = 33	

So, number of critical path = 2

Path with more uncertainty = 1 - 2 - 5 - 6

20. (c)

For given network diagram

After updating

21. (b)

Sum of slacks = 2 + 1 = 3 days

22. (c)

Tension in toe cable = Rolling resistance + Grade resistance

As grade resistance = 10 kg/tonne/1% slope

$$\therefore 1105 \, \text{kg} = \frac{R \times 13000}{10^3} + \frac{10 \times 13000}{10^3} \times 4$$

So rolling resistance = 45 kg/tonne

24. (b)

Expected time =
$$\frac{t_0 + t_p + 4t_m}{6} = \frac{12 + 25 + 20 \times 4}{6}$$

= $\frac{117}{6}$ minutes

Standard deviation, $\sigma = \frac{t_p - t_0}{6} = \frac{25 - 12}{6} = \frac{13}{6}$ minutes

Minimum time alloted, $t_{min} = t_E - 3\sigma$

$$=\frac{117}{6} - \frac{3 \times 13}{6} = 13 \text{ minutes}$$

25. (a

For given relationship

26. (b)

Let N be the number of unit

At breakdown point,

Fixed cost + Variable cost = Total cost

$$\Rightarrow$$
 1000000 + 100 × N = 5000000

$$\therefore \qquad N = 40000 \, \text{units}$$

Suppose the selling price per unit be ₹x

Now, Margin of safety =
$$\frac{\text{Total sales} - \text{Sales at BEP}}{\text{Total sales}}$$

$$\Rightarrow \frac{10}{100} = \frac{5000000 - 40000 \times x}{5000000}$$

$$\therefore \qquad \qquad x = \mathbf{\$}112.5$$

27. (a)

Rolling resistance = $15 \times 50 = 750 \text{ kg}$

Grade resistance =
$$15000 \times \frac{2}{100}$$
 = 300 kg

Pull available for towing the load = Maximum rimpull - rolling resistance - upgrade resistance = 6300 - 750 - 300 = 5250 kg

From straight line method of depreciation

Depreciation,
$$D = \frac{c_i - c_s}{n}$$

$$D = \frac{10000 - 1000}{5} = \text{Rs.}1800$$

Book value, $B_m = c_i - mD$

$$B_2 = 10000 - 2 \times 1800$$

= Rs. 6400

(d) 30.

$$\overline{X} = 17 \text{ units}$$

Variance,
$$\sigma^2 = 9$$

Standard deviation, $\sigma = 3$

$$Z = \frac{x - \overline{x}}{\sigma}$$

For 22 days,

$$Z = \frac{22-17}{3} = \frac{5}{3} = 1.67$$

$$P(Z < 1.67) = 95.2\%$$

For 20 days,

$$Z = \frac{20-17}{3} = \frac{3}{3} = 1$$

$$P(Z < 1) = 84.13\%$$

$$P(Z < 1.66) - P(Z < 1) = 95.2\% - 84.13\%$$
$$= 11.07\%$$