

MADE EASY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

THEORY OF MACHINES

MECHANICAL ENGINEERING

Date of Test: 25/09/2025

ANSWER KEY >

1.	(b)	7.	(a)	13.	(d)	19.	(a)	25.	(b)
2.	(c)	8.	(a)	14.	(a)	20.	(b)	26.	(d)
3.	(d)	9.	(c)	15.	(b)	21.	(a)	27.	(d)
4.	(a)	10.	(c)	16.	(b)	22.	(c)	28.	(c)
5.	(b)	11.	(d)	17.	(a)	23.	(a)	29.	(a)
6.	(b)	12.	(a)	18.	(c)	24.	(a)	30.	(c)

DETAILED EXPLANATIONS

1. (b)

Mass,
$$m = 10 \text{ kg}$$

Damping coefficient, c = 100 kg/s

Spring constant, $k_1 = 4000 \text{ N/m}$

$$k_2 = 200 \,\mathrm{N/m}$$

$$k_2 = 1000 \,\text{N/m}$$

Equivalent spring constant, $k_e = k_1 + \frac{k_2 k_3}{k_2 + k_3} = 4000 + \frac{200 \times 1000}{1200} = 4166.67 \text{ N/m}$

$$\omega_n = \sqrt{\frac{k_e}{m}} = \sqrt{\frac{4166.67}{10}} = 20.412 \,\text{rad/s}$$

Damping factor,
$$\xi = \frac{c}{2m\omega_n} = \frac{100}{2 \times 10 \times 20.412} = 0.245$$

 ξ < 1, so our vibration system is underdamped.

2.

As per given information

Number of links, L = 5

Number of lower pair, I = 5

Number of higher pair, h = 1

Degree of freedom =
$$3(L-1) - 2J - h$$

= $3(5-1) - 2 \times 5 - 1$
= $12 - 10 - 1 = 1$

3. (d)

$$\omega_{AB} = 1 \text{ rad/s}, L_{CD} = 1.8 L_{AB}$$

$$\frac{L_{CD}}{L_{AB}} = 1.8$$

 $V_C = V_C$ (Link BC in pure translation)

$$\omega_{AB}L_{AB} = \omega_{CD}L_{CD}$$

$$\frac{\omega_{AB}}{\omega_{CD}} = \frac{L_{CD}}{L_{AB}}$$

$$\omega_{CD} = \overline{L_{AB}}$$

$$\omega_{CD} = \omega_{AB} \times \frac{L_{AB}}{L_{CD}} = 1 \times \frac{1}{1.8} = 0.555 \text{ rad/s}$$

4. (a)

Restoring torque $ka^2(\theta)$

From D - alenbert's principle,

$$I\ddot{\theta} + ka^2\theta = 0$$

$$mb^2\ddot{\theta} + ka^2\theta = 0$$

$$\ddot{\theta} + \left(\frac{ka^2}{mb^2}\right)\theta = 0$$

$$\omega_n = \frac{a}{b} \sqrt{\frac{k}{m}}$$

5. (b)

From given information

By applying velocity polygon analysis,

From ΔOab

$$V_{ba} = ob \sin 30^{\circ}$$

 $V_{BA} = 0.75 \sin 30^{\circ} \text{ m/s}$
 $= 0.375 \text{ m/s}$

$$\omega_{AB} = \frac{V_{BA}}{AB} = \frac{0.375 \text{ m/s}}{0.36 \text{ m}} = 1.0416 \text{ rad/s}$$

6. (b)

Number of links, n = 6Number of lower pair, j = 7

Number of higher pair, h = 0

Degree of freedom,
$$F = 3(n-1) - 2j - h$$

= $3(6-1) - 2 \times 7 - 0$
= $15 - 14 = 1$

7. (a)

For parallel,

$$s_{\text{eq}} = s_1 + s_2 + s_3$$
 and for series $\frac{1}{s_{eq}} = \frac{1}{s_1} + \frac{1}{s_2} + \frac{1}{s_3}$

$$s_{\text{eq1}} = s + s + s = 3s$$

$$\frac{1}{s_{eq2}} = \frac{1}{s} + \frac{1}{3s} + \frac{1}{s} = \frac{1}{s} \left[2 + \frac{1}{3} \right] = \frac{1}{s} \times \frac{7}{3}$$

$$s_{\text{eq2}} = \frac{3s}{7}$$

Natural frequency,
$$\omega_n = \sqrt{\frac{s_{eq2}}{m}} = \sqrt{\frac{3s}{7m}} = \sqrt{\frac{3 \times 7}{7 \times 3}} = 1$$

[Given:
$$\frac{s}{m} = \frac{7}{3}$$
]

8. (a)

Drawing configuration at $\theta = 30^{\circ}$

At this position \angle OBC will be 90°, velocity of B perpendicular to CD will be zero hence $\omega_{CD} = 0$. So, Coriolis acceleration will be zero.

9. (c)

AB = 100 mm = 0.1 m, BC = 220 mm = 0.220 m, CD = 150 mm = 0.150 m

$$\sin\theta = \frac{AB}{BC} = \frac{100}{220}$$

$$\theta = \sin^{-1}(0.4545) = 27.035^{\circ}$$

$$V_B = (AB) \times \omega_{AB} = 0.1 \times 6 = 0.6 \text{ m/s}$$

www.madeeasy.in

Making velocity triangle for above configuration.

$$\tan(90 - \theta) = \frac{dc}{ab}$$

$$dc = \tan(90 - 27.035)^{\circ} \times 0.6$$

$$= \tan(67.96)^{\circ} \times 0.6 = 1.175$$

$$V_{C} = 1.175 \text{ m/s}$$

$$= \omega_{CD} \times (CD)$$

$$\omega_{CD} = \frac{1.175}{0.150} = 7.83 \text{ rad/s}$$

10. (c)

$$\frac{T_{\text{input}}}{T_{\text{output}}} = \frac{\omega_{\text{out put}}}{\omega_{\text{input}}}$$

$$T_{\text{output}} = T_A \times \frac{N_A}{N_D} = \frac{80 \times 100}{20} = 400 \text{ Nm}$$
 Assuming,
$$CCW = +\text{ve}$$

$$T_A = +80 \text{ N-m}$$

$$T_D = -400 \text{ N-m}$$
 Now, $\Sigma T = 0$

11.

(d)
As per given configuration,
There are two forces acting on the system.
By taking the moments about point 'O',

 $T_A + T_D + T_{GB} = 0$ $80 - 400 + T_{GB} = 0$ $T_{GB} = 320 \text{ Nm}$

$$\Sigma M_{\rm o} = 0$$

$$I\ddot{\theta} + mg(L\sin\theta) + kL\sin\theta \times L\cos\theta = 0$$

For small
$$\theta$$
, $\sin \theta = \theta$; $\cos \theta = 1$

$$I\ddot{\theta} + mg(L\theta) + kL^2\theta = 0$$

$$\ddot{\theta} + \frac{mgL + kL^2}{mL^2}\theta = 0 \qquad ... (i)$$

$$\ddot{\theta} + \omega_n^2 \theta = 0 \qquad ... (ii) By comparing$$

Equation (i) and (ii)

Natural frequency,
$$\omega_n = \sqrt{\frac{\left(mgL + kL^2\right)}{mL^2}}$$

12. (a)

As per given data,

Teeth of right hand helical pinion, t_p = 36 teeth

Teeth of right hand helical gear, T_G = 48 teeth

Helix angle of gear, $\psi_G = ?$

As per given, both gear are of same hand,

$$\psi_P + \psi_G = 45^{\circ}$$
 $\psi_G = 45^{\circ} - \psi_P$
 $= 45^{\circ} - 20^{\circ} = 25^{\circ}$

As we know,

$$(m_n)_G = m \cos \psi_G$$

Module in the normal plane,

$$m = \frac{(m_n)_G}{\cos \psi_G} = \frac{2.5}{\cos 25^\circ} = 2.758 \text{ mm}$$

13. (d)

As per configuration,

$$\cos\alpha = \frac{OA}{OC} = \frac{100}{300}$$
$$\alpha = 70.528^{\circ}$$

Angle turned by crank during forward stroke

Angle turned by crank during return stroke Quick return ratio =

$$= \frac{360^{\circ} - 2\alpha}{2\alpha} = \frac{360^{\circ} - 2 \times 70.528^{\circ}}{2 \times 70.528^{\circ}} = 1.55$$

14. (a)

Given:

$$l = 6, j = 7, h = 0$$

DOF =
$$3(l-1) - 2j - h - Fr$$

= $3(6-1) - 2 \times 7 - 0 - 0 = 15 - 14$
DOF = 1

15. (b)

As per given information

Arc of contact =
$$\frac{\text{Path of contact}}{\cos \phi}$$

Path of contact = Arc of contact $\times \cos \phi$

$$2\left(\sqrt{(R_a)^2 - (R\cos\phi)^2} - R\sin\phi\right) = 2 \times 2.54 \times \cos 20^{\circ}$$
 ... (i)

Circular pitch =
$$2.54 = \frac{\pi \times D}{T} = \frac{\pi \times 2R}{30}$$

$$R = 12.127 \text{ cm}$$

From equation (i)

$$(R_a)^2$$
 - $(12.127 \cos 20^\circ)^2$ = $(2.54 \cos 20^\circ + 12.127 \sin 20^\circ)^2$
 R_a^2 = $(12.127 \cos 20^\circ)^2 + 42.702$
 R + Addendum = 13.136 cm
Addendum = $(13.136 - 12.127)$ cm
= 1.009 cm

16. (b)

Drawing velocity diagram,

From geometry, $\angle dca = \angle cad = 45^{\circ}$

$$|\vec{V}_{C}| = \omega_2 AC = 4 \times 15 \text{ cm/s}$$

= 60 cm/s = 0.6 m/s

Velocity of slider wrt link 4 = $\left| \vec{V}_{CD} \right| = \left| \vec{V}_{DC} \right| = \left| \vec{V}_{C} \right| \sin 45^{\circ}$

$$= \frac{0.6}{\sqrt{2}} = 0.424 \text{ m/s}$$

17. (a)

Using Energy Method:

The liquid column is displaced from equilibrium position by a distance x. if ρ and A are the density of liquid and cross-section area respectively, then the mass of the liquid column is ρAl ,

KE =
$$\frac{1}{2}m\dot{x}^2 = \frac{1}{2}(\rho A l)\dot{x}^2$$

$$PE = mgx = \rho Axgx = \rho Agx^2$$

Total energy of system is constant,

$$\frac{1}{2}\rho Al\dot{x}^2 + \rho Agx^2 = C$$

x

Differenciating w.r.t. time,

$$\rho A l \dot{x} \ddot{x} + 2\rho A g x \dot{x} = 0$$

$$l\ddot{x} + 2gx = 0$$

So,

$$\omega_n = \sqrt{\frac{2g}{l}} \operatorname{rad/s}$$

$$f_n = \frac{1}{2\pi} \sqrt{\frac{2 \times 10}{0.16}} = 1.779 \,\text{Hz}$$

18. (c)

$$\psi$$
 = Helix angle

$$\lambda$$
 = Lead angle

$$\lambda + \psi = 90^{\circ}$$

Lead angle, $\lambda = 20^{\circ}$

Gear ratio =
$$\frac{T_G}{T_W} = \frac{15}{1} = \frac{\text{Number of teeth on worm gear}}{\text{Number of start thread on worm}}$$

x

$$T_W$$
 = Triple start thread worm = 3
 T_G = 15 × T_W = 15 × 3 = 45

$$T_G = 15 \times T_W = 15 \times 3 = 45$$

19. (a)

For very small deflection

Spring torque =
$$k(4.5l)^2\theta$$
 = 20.25 $k\theta l^2$

dashpot torque =
$$c(3.5l)^2\dot{\theta}$$
 = 12.25 $c\dot{\theta}l^2$

Inertia torque =
$$m(2l)^2 \ddot{\theta} = 4m\ddot{\theta}l^2$$

from De Alembert's principle,

$$4m\ddot{\theta}l^2 + 12.25c\dot{\theta}l^2 + 20.25k\theta l^2 = 0$$

$$m\ddot{\theta} + 3.0625c\dot{\theta} + 5.0625k\theta = 0$$

20. (b)

From the torque equation about 'O'

$$I\ddot{\theta} + k_t \theta - W \cdot a \sin \theta = 0$$

For small displacement

$$I\ddot{\Theta} + k_t \Theta - W \cdot a\Theta = 0$$

$$\frac{W}{g}a^2\ddot{\theta} + (k_t - W \cdot a)\theta = 0$$

$$\ddot{\theta} + \frac{(k_t - W \cdot a)\theta}{\frac{W}{g}a^2} = 0$$

$$\omega_n = \sqrt{\frac{g}{a^2 \cdot W} (k_t - W \cdot a)} = \sqrt{\frac{g}{a} \left[\frac{k_t}{W \cdot a} - 1 \right]}$$

21. (a)

As per given configuration,

After application of force, spring '2' deflect ' x_2 ' and spring '1' deflect ' x_1 '.

From similar triangle property,

$$x = \frac{bx_1}{(a+b)} + \frac{ax_2}{(a+b)}$$
 ... (i)

If F_1 is the force acting on spring '1' and F_2 is the force acting on spring '2',

$$F = F_1 + F_2$$

$$F_2 \times b = F_1 \times a$$

$$F_1 = \frac{bF}{a+b} \Rightarrow x_1 = \frac{F_1}{k_1} = \frac{bF}{k_1(a+b)}$$
 ... (ii)

$$F_2 = \frac{aF}{a+b} \Rightarrow x_2 = \frac{F_2}{k_2} = \frac{aF}{k_2(a+b)}$$
 ... (iii)

From (i), (ii) and (iii)
$$x = \frac{F}{(a+b)^2} \left[\frac{k_2 b^2 + k_1 a^2}{k_1 k_2} \right]$$

$$\Rightarrow k_e = \frac{F}{x} = \frac{k_1 k_2 (a+b)^2}{k_2 b^2 + k_1 a^2}$$

As per given information

$$F_r = \frac{1}{3}F_n$$

As we know,

$$F_r = F_n \sin \phi$$

$$\sin \phi = \frac{1}{3}$$

$$\phi = \sin^{-1} \left(\frac{1}{3}\right) = 19.47^{\circ}$$

$$A \times m = 0.8m$$

$$A = 0.8$$

When pinion gears with rack, $A_R = 0.8$

$$t_{\min} = \frac{2A_R}{\sin^2 \phi} = \frac{2 \times 0.8}{(\sin 19.47^\circ)^2}$$
 $t_{\min} = 14.40 \approx 15$

23. (a)

As per given information, Longitudinal vibration,

$$\delta_{\text{static}} = \frac{MgL}{AE} = \frac{300 \times 9.81 \times 0.9}{\frac{\pi}{4} (0.1)^2 \times 200 \times 10^9} = 1.686 \times 10^{-6} \text{ m}$$

$$\omega_n = \sqrt{\frac{g}{\delta_{\text{static}}}} = \sqrt{\frac{9.81}{1.686 \times 10^{-6}}} = 2412.004 \text{ rad/s}$$

For transverse vibration,

$$\delta_{\text{static}} = \frac{WL^3}{3EI} = \frac{300 \times 9.81 \times 0.9^3}{3 \times 200 \times 10^9 \times \frac{\pi}{64} (0.1)^4}$$
$$= 7.28 \times 10^{-4} \text{ m}$$
$$\omega_n = \sqrt{\frac{g}{\delta_{\text{static}}}} = \sqrt{\frac{9.81}{7.28 \times 10^{-4}}} = 116.047 \text{ rad/ s}$$

Therefore, $(Freqency)_{longitudinal} > (Freqency)_{transverse}$ is correct.

24. (a)

Given data:

Mass of vehicle,
$$m = 300 \text{ kg}$$

Velocity of vehicle, $V = 108 \text{ km/hr}$

$$= \frac{108 \times 1000}{3600} \text{ m/s} = 30 \text{ m/s}$$

Wavelength, $\lambda = 6.9 \text{ m}$

Time taken to cover one wavelength distance, $t = \frac{\lambda}{V}$

$$t = \frac{6.9}{30} = 0.23s$$

Frequency for one revolution, $\omega = \frac{2\pi}{t} = \frac{2\pi}{0.23} = 27.318 \text{ rad/s}$

We know that,

Natural frequency for spring mass sytem, $\omega_n = \sqrt{\frac{k}{m}}$.

For resonance to occur, $\omega = \omega_n$

$$27.318 = \sqrt{\frac{k}{m}}$$

$$(27.318)^2 = \frac{k}{300}$$

$$k = 223885.166 \text{ N/m}$$

= 0.224 MN/m

Given: $\omega = 1.85 \text{ rad/s}^2$, $O_1 O_2 = 500 \text{ mm}$, $O_1 A = 400 \text{ mm}$, $O_2 A = 800 \text{ mm}$

By cosine rule,

$$\cos\theta = \frac{O_1 A^2 + O_2 A^2 - O_1 O_2^2}{2O_1 A \times O_2 A} = \frac{400^2 + 800^2 - 500^2}{2 \times 400 \times 800} = 0.86$$

$$\theta = \cos^{-1}(0.86) = 30.75^{\circ},$$

$$\theta = 30.75^{\circ}$$
 $V = (0.4) \omega = 0.400 \times 1.85 = 0$

Velocity,
$$V = (O_1 A)\omega = 0.400 \times 1.85 = 0.74 \text{ m/s}$$

Coriolic acceleration, $a_c = 2V_s \omega_{O_2A}$ here, $V_s = \text{Velocity of slider along link } O_2A = V \sin\theta$ where,

$$\omega_{O_2A}$$
 = Angular velocity of link $O_2A = \frac{V\cos\theta}{O_2A}$

$$\therefore \qquad a_c = 2V_s \,\omega_{O_2A} = 2 \times V \sin\theta \times \frac{V \cos\theta}{O_2 A}$$

$$= \frac{V^2 (2 \sin \theta \cos \theta)}{O_2 A} = \frac{V^2 \sin 2\theta}{O_2 A}$$
$$= \frac{0.74^2 \sin (2 \times 30.75)}{0.800} = 0.60155 \text{ m/s}^2$$
$$a_c = 601.55 \text{ mm/s}^2$$

26. (d)

:.

Given:

$$N = 60 \text{ rpm},$$

$$OA = 8\sqrt{2} \text{ cm},$$

$$AB = 30.9 \text{ cm}$$

$$\omega = \frac{2\pi N}{60} = \frac{2 \times \pi \times 60}{60} = 2\pi \text{ rad/ s}$$

Now,

$$AM = OA \sin 45^\circ = AB \sin \beta$$

$$\frac{8\sqrt{2}\sin 45^{\circ}}{30.9} = \sin \beta$$

$$\beta = 15^{\circ}$$

Treating connecting rod as rigid link. So, there should not be any relative velocity along the link.

Alternate Method:

$$V_{\text{slider}} = \omega r \left(\sin \theta + \frac{\sin 2\theta}{2n} \right)$$
$$n = \frac{l}{r} = \frac{30.9}{8\sqrt{2}} = 2.73$$

$$V_{\text{slider}} = 2\pi \times 8\sqrt{2} \left(\sin 45^{\circ} + \frac{\sin(2 \times 45)^{\circ}}{2 \times 2.731} \right) = 63.28 \text{ cm/s}$$

27. (d)

Given r = 60 mm, Module, m = 5 mm

Fractional addendum = 0.8 module,

Addendum =
$$0.8 \times 5 = 4 \text{ mm}$$

$$r_a = r + a = 60 + 4 = 64 \text{ mm}$$

 $a_r = 4 \text{ mm} \text{ and } \phi = 20^\circ$

$$a_r = 4 \text{ mm} \text{ and } \phi = 20^\circ$$

Path of contact for rack and pinion arrangement = $\left[\frac{a_r}{\sin \phi} + \sqrt{r_a^2 - r^2 \cos^2 \phi} - r \sin \phi \right]$

Path of contact =
$$\frac{4}{\sin 20^{\circ}} + \sqrt{64^2 - 60^2 \cos^2 20^{\circ}} - 60 \sin 20^{\circ}$$

Arc of contact =
$$\frac{\text{Path of contact}}{\cos \phi} = \frac{21.458}{\cos 20^{\circ}} = 22.835 \text{ mm}$$

Contact ratio =
$$\frac{\text{Arc of contact}}{\text{Circular pitch}(P_c)} = \frac{22.835}{\pi m}$$

$$\left[P_c = \frac{\pi D}{t} = \pi m\right]$$
$$= \frac{22.835}{\pi \times 5} = 1.453$$

28. (c)

Given:
$$T_S = \frac{T_A}{4}$$
, $N_S = 400$ rpm, $N_P = 600$ rpm, $N_a = -40$ rpm

Action	arm 'a'	S	В	A	Р
arm a' fixed + 1 rev to a'	0	+1	$-\frac{T_S}{T_B}$	$-\frac{T_S}{T_B} \times \frac{T_B}{\left(T_{\rm int}\right)_A}$	$+\frac{T_S}{T_B} \times \frac{T_B}{\left(T_{\text{int}}\right)_A} \times \frac{\left(T_{ext}\right)_A}{T_P}$
arm 'a' fixed + x rev to S	0	х	$-\frac{T_S}{T_B}x$	$-\frac{T_S}{\left(T_{\rm int}\right)_A}x$	$+\frac{T_S}{T_P} \times \frac{(T_{ext})_A}{(T_{int})_A} x$
All given y rev	y	<i>y</i> + <i>x</i>	$y - \frac{T_S}{T_B}x$	$y - \frac{T_S}{\left(T_{\text{int}}\right)_A} x$	$y + \frac{T_S}{T_P} \times \frac{(T_{ext})_A}{(T_{int})_A} x$

then,
$$N_{S} = y + x = 400 \text{ rpm},$$

$$N_{a} = y = -40 \text{ rpm}$$

$$x = 440 \text{ rpm}$$

$$N_{P} = y + \frac{T_{S}}{T_{P}} \times x = 600 \text{ rpm}$$

$$[(T_{ext})_{A} = (T_{int})_{A}]$$

$$-40 + \frac{T_{S}}{T_{P}} \times 440 = 600$$

$$\frac{T_S}{T_P} = \frac{640}{440} = 1.45$$

29. (a) $e^2 + s^2_{\text{max}} = OB^2$ $OB = \sqrt{3^2 + 4^2} = 5 \text{ cm}$

For,
$$OB = OA + AB = 5 \text{ cm}$$

$$AB = 4 \text{ cm (Given } OA = 1 \text{ cm)}$$

$$\theta_2 = 0$$

$$AC^2 + BC^2 = AB^2$$

$$BC = \sqrt{4^2 - 3^2} = \sqrt{7}$$

$$(s)_{\theta_2 = 0} = 1 + \sqrt{7} = 3.64 \text{ cm}$$

30. (c) For the given gear train speed ratio can be written as.

Speed ratio =
$$\frac{ \left(\begin{array}{c} \text{Product of the number of} \\ \text{teeth on driven} \end{array} \right) }{ \left(\begin{array}{c} \text{Product of the number of} \\ \text{teeth on driver} \end{array} \right) }$$

$$\frac{\omega_2}{\omega_8} = \frac{T_3 \times T_5 \times T_6 \times T_8}{T_2 \times T_4 \times T_5 \times T_7}$$

$$S.R = \frac{T_3 \times T_6 \times T_8}{T_2 \times T_4 \times T_7}$$

Therefore, speed ratio is independent from gear, 5. So idler gear is gear 5.