

# **MADE ERSY**

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

# Design of Steel Structures

# **CIVIL ENGINEERING**

Date of Test: 21/09/2025

## ANSWER KEY >

| 1 |            | (d) | 7.  | (c) | 13. | (b) | 19. | (a) | 25. | (b) |
|---|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2 |            | (c) | 8.  | (a) | 14. | (c) | 20. | (a) | 26. | (b) |
| 3 |            | (c) | 9.  | (a) | 15. | (a) | 21. | (c) | 27. | (c) |
| 4 | ٠.         | (d) | 10. | (b) | 16. | (c) | 22. | (b) | 28. | (c) |
| 5 | <b>.</b>   | (c) | 11. | (a) | 17. | (a) | 23. | (d) | 29. | (a) |
| 6 | i <b>.</b> | (b) | 12. | (d) | 18. | (a) | 24. | (c) | 30. | (b) |
|   |            |     |     |     |     |     |     |     |     |     |



# **DETAILED EXPLANATIONS**

### 3. (c)

#### Maximum slenderness ratio for various types of tension members

| S.No. | Type of Tension Member                                                                                                                                        | Maximum Slenderness Ratio |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1.    | Tension member in which there can be reversal of direct stress due to loads other than wind or earthquake force.                                              | 180                       |
| 2.    | A member normally acting as a tie in a roof truss<br>or a bracing system but subjected to possible<br>reversal of stress due to wind or earthquake<br>forces. | 350                       |
| 3.    | Tension member i.e., members always under tension (other than pretensioned members)                                                                           | 400                       |

## 4. (d)

Design stress for the fillet weld,

$$f_{wd} = \frac{f_u}{\sqrt{3}\gamma_{mw}} = \frac{410}{\sqrt{3} \times 1.25} = 189.37 \text{ N/mm}^2$$

Design strength of fillet weld per mm length

= 
$$f_{wd} \times 1 \times t_t$$
  
= 189.37 × 1 × 0.7 × 8 = 1060.476  
 $\simeq$  1060.5N/mm

#### 5. (c)

For simultaneous failure, plastic moments of overhang and span AB should be same.

.. By virtual work theorem,

For overhang



$$\frac{W}{2} \times a \times \theta = M_p \times \theta$$

$$M_p = \frac{Wa}{2} \qquad \dots (i)$$

 $\Rightarrow$ 

For span AB,



$$W \times \frac{l}{2} \times \theta = 4M_p \theta$$

$$\Rightarrow M_p = \frac{Wl}{8} \qquad ...(ii)$$

From equations (i) and (ii), we get

$$\frac{Wa}{2} = \frac{Wl}{8}$$
$$a = \frac{l}{4}$$

$$\Rightarrow$$

6. (b)

Refer IS 800 : 2007 Clause 8.7.1

7. (c)

As per caluse 6.3 of IS 875: part III 2015

Design wind speed, 
$$V_z = k_1 k_2 k_3 k_4 V$$
  
=  $1 \times 0.5 \times 0.5 \times 1.15 \times 40$   
=  $11.5 \text{ m/s}$ 

As per clause 7.1 of IS 875: Part III 2015

Design wind pressure = 
$$0.6V_z^2$$
  
=  $0.6 \times 11.5^2 = 79.35 \text{ N/m}^2$ 

9. (a)

 $\Rightarrow$ 

$$\delta' = \frac{11.62}{U_*}$$

 $u_*$  = Shear velocity

$$u_* = \sqrt{\frac{\tau_0}{\rho}}$$

$$\delta' = \frac{11.62}{\sqrt{\frac{\tau_0}{\rho}}}$$

 $\tau_0$  = Wall shear stress

 $\rho$  = Density of fluid

10. (b)

Refer IS 800: 2007 (Table 2)

(i) 
$$\frac{b}{t_f} = 6.6 < 8.4 \in$$

where

$$\in \sqrt{\frac{250}{f_y}} = 1$$
 (Given)

 $\Rightarrow$  Flange section is plastic (class I)

(ii) 
$$\frac{d}{t_{vv}} = 89 < 105 \in$$

 $\Rightarrow$  Web section is compact (Class 2)

:. The overall section is considered compact.

#### 11. (a)

Channels are placed back to back such that  $(I_{zz})_{combined} = (I_{yy})_{combined}$ .

 $C_{yy}$ 

$$I_{zz}$$
  $S$   $(I_{zz})_{co}$ 

$$I_{yy} \qquad (I_{yy})_{co} \qquad I_{yy}$$

$$\therefore \qquad 2I_{zz} = 2\left[I_{yy} + A\left(\frac{S}{2} + C_{yy}\right)^2\right]$$

$$\Rightarrow \qquad 2 \times 6321 \times 10^4 = 2\left[310 \times 10^4 + 4564 \times \left(\frac{S}{2} + 23.6\right)^2\right]$$

# 12. (d)



 $S = 182.325 \text{ mm} \simeq 182.3 \text{ mm}$ 

$$D_s = 2 + 1 - 2 = 1$$

No. of hinges required for mechanism formation

$$= D_s + 1 = 1 + 1 = 2$$

Mechanism is as shown below (plastic hinges at A and B)



External work = Internal work

$$\Rightarrow P \times \delta = M_P \alpha + M_P \alpha + M_P \beta$$

$$\Rightarrow \qquad P \times \delta = 2M_P \alpha + M_P \beta$$

$$\Rightarrow \qquad P \times \delta = 2M_P \beta$$

$$\Rightarrow P \times \delta = 2M_P \times \frac{\delta}{4}$$

$$\Rightarrow P = \frac{M_P}{2}$$

$$\Rightarrow P = \frac{180}{2} = 90 \text{ kN}$$

$$\therefore \text{ Collapse load} = 90 \text{ kN}$$

$$\Sigma M_A = 0$$

$$A \qquad B \qquad C$$

$$B \qquad R$$

$$M_P$$
  $B$   $M_P$   $8 \,\mathrm{m}$   $4 \,\mathrm{m}$ 

$$\therefore M_p - M_p + M_p + R \times 12 = 90 \times 8$$

$$\Rightarrow 180 + R \times 12 = 720$$

$$\Rightarrow R = 45 \text{ kN}$$

#### 13. (b)

Non dimensional effective slenderness ratio is given by

$$\lambda = \sqrt{\frac{f_y}{f_{cc}}}$$

$$f_{cc} = \frac{\pi^2 E}{\left(\frac{kL}{r}\right)^2}$$

$$kL = 1 \times 7000 \text{ mm} = 7000 \text{ mm}$$



(: Column is hinged at both the ends)

$$r = \sqrt{\frac{I}{A}} = \sqrt{\frac{13533 \times 10^4}{28000}}$$

$$\Rightarrow \qquad r = 69.521 \text{ mm}$$

$$f_{cc} = \frac{\pi^2 \times 2 \times 10^5}{\left(\frac{7000}{69.521}\right)^2} = 194.699 \approx 194.7 \text{ N/mm}^2$$

$$\therefore \qquad \lambda = \sqrt{\frac{250}{194.7}} = 1.133 \approx 1.13$$

#### 14. (c)



From similar triangles,

$$\frac{b_1}{b} = \frac{h_1}{h} \qquad \dots (i)$$

Plastic neutral axis divides the section into two equal areas.

Using eq. (i) and eq. (ii)

$$b_1 = \frac{b}{\sqrt{2}} \text{ and } h_1 = \frac{h}{\sqrt{2}}$$

$$Z_p = \frac{A}{2} \left[ \overline{y}_c + \overline{y}_t \right]$$

$$\overline{y}_c = \left( \frac{h}{\sqrt{2}} \right) \frac{1}{3}$$

Compression

h

$$b/2$$
  $y_t$  Tension

$$\overline{y}_t = \frac{2b + \frac{b}{\sqrt{2}}}{b + \frac{b}{\sqrt{2}}} \times \left(\frac{h - \frac{h}{\sqrt{2}}}{3}\right)$$
 [Trapezoidal tension section]

 $\overline{y}_t = \frac{2\sqrt{2} + 1}{\sqrt{2} + 1} \times \frac{(\sqrt{2} - 1)h}{3\sqrt{2}}$ 

$$Z_p = \frac{1}{2} \times \left(\frac{1}{2}bh\right) \left[\frac{h}{3\sqrt{2}} + \frac{2\sqrt{2}+1}{\sqrt{2}+1} \times \frac{\left(\sqrt{2}-1\right)h}{3\sqrt{2}}\right]$$

$$\Rightarrow \qquad Z_p = \frac{bh^2}{3\sqrt{2}\left(\sqrt{2}+1\right)} \times \frac{\sqrt{2}-1}{\sqrt{2}-1}$$

$$\Rightarrow \qquad Z_p = \frac{bh^2\left(\sqrt{2}-1\right)}{3\sqrt{2}}$$

$$\Rightarrow \qquad D_p = \frac{bh^2\left(\sqrt{2}-1\right)}{3\sqrt{2}}$$

$$\Rightarrow \qquad D_p = 20 \text{ cm, } h = 5 \text{ cm}$$

$$\Rightarrow \qquad Z_p = \frac{20 \times 5^2\left(\sqrt{2}-1\right)}{3\sqrt{2}} = 48.816 \text{ cm}^3 \approx 48.82 \text{ cm}^3$$

#### 15. (a)

Given, M20 bolts of grade 4.6,

Given: d = 20 mm,  $f_{ub} = 400 \text{ N/mm}^2$ ;  $f_{yb} = 240 \text{ N/mm}^2$ .

In this connection, packing plate of 8 mm thickness is to be used and hence there shall be reduction in the shear strength of bolt where the reduction factor is

$$\beta_{pkg} = (1 - 0.0125 \ t_{pkg})$$
  
=  $(1 - 0.0125 \times 8) = 0.9$ 

:. Here, connection is double cover butt joint, hence bolts will be in double shear, For one bolt,

 $\therefore \text{ Design shear strength of bolt,} \qquad V_{dsb} = \frac{f_{ub}}{\sqrt{3} \times \gamma_{mb}} (1 \times A_{sb} + 1 \times A_{nb}) \times \beta_{pkg}$ 

$$= \frac{400}{\sqrt{3} \times 1.25} \left( 1 \times \frac{\pi}{4} \times 20^2 + 0.78 \times \frac{\pi}{4} \times 20^2 \right) \times 0.9 \times 10^{-3} \text{ kN}$$
  
= 92.98 kN \times 93 kN

 $\therefore$  Design shear strength of 6 bolts in the joint = 6 × 93 = 558 kN

#### 16. (c

For simultaneous collapse condition, the plastic hinges shall be formed at A, B and between A and B.

For collapse of part BC



For collapse of part AB, plastic hinges will be developed at A, B and at mid point of AB.



$$\begin{aligned} W_i &= W_E \\ \Rightarrow & 4M_p\theta &= w_u \left(\frac{1}{2} \times L \times \frac{L}{2}\theta\right) \\ \Rightarrow & w_u &= \frac{16M_P}{L^2} \end{aligned}$$

For simultaneous collapse of AB and BC,

$$\frac{2M_p}{a^2} = \frac{16M_p}{L^2}$$

$$\Rightarrow \qquad a^2 = \frac{L^2}{8}$$

$$\Rightarrow \qquad a = \frac{L}{2\sqrt{2}}$$

#### 17. (a)

Throat thickness of weld,  $t_t = ks = 0.7 \times 8 = 5.6 \text{ mm}$ 

Strength of fillet weld,
$$P_{dw} = \frac{f_u}{\sqrt{3}\gamma_{mw}} \times L_w \times t_t$$

For connection to be safe, $P_{dw}$ =

⇒ 
$$\frac{410}{\sqrt{3} \times 1.5} \times L_w \times 5.6 = 300 \times 10^3$$
  
⇒  $L_w = 339.469 \text{ mm}$   
⇒  $2x + 200 = 339.469$   
⇒  $x = \frac{139.469}{2} = 69.73 \text{ mm} \approx 70 \text{ mm}$ 

#### 18.

Classification of beam section:



$$\in = \sqrt{\frac{250}{250}} = 1$$

$$d = h - 2 (t_f + R_1)$$

$$= 350 - 2 (14.2 + 14) = 293.6 mm$$

$$\frac{b}{t_f} = \frac{140/2}{14.2} = 4.93 < 9.4\varepsilon$$
 : Flange is plastic  $\frac{d}{t_w} = \frac{293.6}{8.1} = 36.25 < 84\varepsilon$  : Web is plastic

Hence section is plastic.

Design bending strength,
$$M_d = \beta_b \times Z_{pz} \times \frac{f_y}{\gamma_{m0}}$$

where

$$\beta_b = 1 \text{ for plastic section}$$

$$= 1.0 \times 889.57 \times 10^3 \times \frac{250}{1.1} \times 10^{-6} \text{ kNm}$$

$$= 202.175 \text{ kNm} \simeq 202.2 \text{ kNm}$$

$$\leq 1.2 \times Z_{ez} \times \frac{f_y}{\gamma_{m0}}$$

$$= 1.2 \times 778.9 \times 10^3 \times \frac{250}{\gamma_{m0}} \times 10^{-6} \text{ kNm}$$

= 
$$1.2 \times 778.9 \times 10^{3} \times \frac{250}{1.1} \times 10^{-6} \text{ kNm}$$
  
=  $212.427 \text{ kNm}$  (OK)

Hence, the design bending strength = 202.2 kNm

#### 19. (a)



$$r_4 = \sqrt{75^2 + 100^2} = 125 \text{ mm}$$
  
 $\Sigma r_i^2 = 4(125)^2 + 2(75)^2$   
= 73750 mm<sup>2</sup>



$$T = 100 \sin 45^{\circ} \times 0.37 - 100 \cos 45^{\circ} \times 0.13$$

$$= 16.97 \text{ kN-m}$$

Direct shear force in bolt '4'

$$F_{D1} = \frac{100\cos 45^{\circ}}{6} = 11.785 \,\text{kN}$$

$$F_{D2} = \frac{100 \sin 45^{\circ}}{6} = 11.785 \text{ kN}$$

Torsional shear force in bolt '4'

$$F_T = \frac{Tr_i}{\Sigma r_i^2} = \frac{16.97 \times 10^3 \times 125}{73750} = 28.76 \text{ kN}$$

$$F_x = F_{D1} + F_T \sin \theta$$

$$= 11.785 + 28.76 \times \frac{100}{125} = 34.793 \text{ kN}$$

$$F_y = F_{D1} + F_T \cos\theta$$

$$= 11.785 + 28.76 \times \frac{75}{125} = 29.041 \text{ kN}$$

∴ Resultant force in bolt 4 = 
$$\sqrt{F_x^2 + F_y^2} = \sqrt{(34.793)^2 + (29.041)^2}$$
  
= 45.32 kN

#### 20. (a)

Depth of web:

$$d = h - 2 (t_f + R_1)$$
  
= 350 - 2 (11.2 + 16)  
= 295.2 mm

Slenderness ratio, 
$$\left(\frac{kL}{r}\right) = 2.5 \frac{d}{t_w} = 2.5 \times \frac{29.52}{7.4} = 99.73$$

From table given:

$$f_{cd} = 121 + \frac{107 - 121}{100 - 90} (99.73 - 90) = 107.38 \,\text{N/mm}^2$$



$$B_1 = b + x = b + \frac{h}{2} = 100 + \frac{350}{2} = 275 \text{ mm}$$

.. Web buckling strength,

$$F_{wb} = B_1 \times t_w \times f_{cd}$$
  
= 275 × 7.4 × 107.38 × 10<sup>-3</sup> kN  
= 218.52 kN

#### 21.

Diameter of bolt.  $d = 20 \,\mathrm{mm}$ 

Diameter of bolt hole,  $d_o = 22 \text{ mm}$ 

For Fe410 grade steel,  $f_y^0 = 250 \text{ N/mm}^2$   $f_u = 410 \text{ N/mm}^2$ 

Partial safety factor,  $\gamma_{m1} = 1.25$ 

 $\gamma_{m0} = 1.1$ 

Block shear strength, 
$$T_{db} = \min \begin{cases} \frac{A_{vg}f_y}{\sqrt{3} \times \gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}} \\ \frac{0.9A_{vn}f_u}{\sqrt{3} \times \gamma_{m1}} + \frac{f_y}{\gamma_{m0}}A_{tg} \end{cases}$$

From figure:

$$A_{vg} = 250 \times 10 = 2500 \text{ mm}^2$$

$$A_{vn} = \left(250 - 2 \times 22 - \frac{22}{2}\right) \times 10 = 1950 \text{ mm}^2$$

$$A_{tg} = 50 \times 10 = 500 \text{ mm}^2$$

$$A_{tn} = \left(50 - \frac{22}{2}\right) \times 10 = 390 \text{ mm}^2$$

$$T_{db} = \min \begin{cases} \left(\frac{2500 \times 250}{\sqrt{3} \times 1.1} + \frac{0.9 \times 390 \times 410}{1.25}\right) \times 10^{-3} \\ \left(\frac{0.9 \times 1950 \times 410}{\sqrt{3} \times 1.25} + \frac{250}{1.1} \times 500\right) \times 10^{-3} \end{cases}$$

$$= \min \begin{cases} 443.17 \text{ kN} \\ 445.98 \text{ kN} \end{cases} = 443.17 \text{ kN}$$

#### 22. (b)

Shear force in the weld per unit length,

$$q_w = \frac{V \times A_f \times \overline{y}}{2I_7}$$

(: There will be two weld lengths along the span for each flange to web connection)

$$I_{zz} = \frac{b_f \times D^3}{12} - \frac{\left(b_f - t_w\right) \times d^3}{12}$$

$$= \frac{560 \times 1900^3}{12} - \frac{\left(560 - 16\right) \times 1800^3}{12} = 5.57 \times 10^{10} \text{ mm}^4$$

$$q_w = \frac{1908 \times 560 \times 50 \times \left(900 + \frac{50}{2}\right)}{2 \times 5.57 \times 10^{10}}$$

#### 23. (d)





d = 400 mm, t = 16 mm

Direct shear stress, 
$$q = \frac{P}{t \times d} = \frac{230 \times 10^3}{16 \times 400} = 35.94 \,\text{N/mm}^2$$
Bending stress, 
$$f_b = \frac{M}{I} y = \frac{Pe}{\left(\frac{td^3}{12}\right)} \times \frac{d}{2}$$

$$= \frac{6Pe}{td^2} = \frac{6 \times 230 \times 10^3 \times 350}{16 \times (400)^2} = 188.67 \,\text{N/mm}^2$$

Resultant stress, 
$$f_r = \sqrt{f_b^2 + 3q^2} = \sqrt{(188.67)^2 + 3(35.94)^2}$$
$$= 198.674 \text{ N/mm}^2 \le \frac{f_y}{\gamma_{m0}} = \frac{250}{1.1} = 227.27 \text{ N/mm}^2$$
(OK)

#### 24. (c)

$$S.F. = \frac{Z_{P}}{Z_{e}}$$
Moment of inertia,  $I = \frac{18 \times 30^{3}}{12} - \left[ \frac{6 \times 6^{3}}{12} + 6 \times 6 \times 6^{2} \right] \times 2$ 

$$= 37692 \text{ mm}^{4}$$

$$y_{\text{max}} = 15 \text{ mm}$$

$$\therefore \qquad Z_{e} = \frac{I}{y_{\text{max}}} = \frac{37692}{15} = 2512.8 \text{ mm}^{3}$$

$$Z_p = \frac{A}{2} (\overline{y}_1 + \overline{y}_2) = A_1 y_1 + A_2 y_2$$

$$= 2 \times [18 \times 15 \times 7.5 - 6 \times 6 \times 6]$$

$$= 3618 \text{ mm}^3$$

$$S.F. = \frac{Z_p}{Z_e} = \frac{3618}{2512.8} = 1.4398 \approx 1.44$$

25. (b)



$$f = \frac{M_p}{M} = \frac{L}{L - L_p}$$

$$\Rightarrow$$

$$\frac{1}{f} = \frac{L - L_p}{L} = 1 - \frac{L_p}{L}$$

$$\Rightarrow$$

$$L_p = \left(1 - \frac{1}{f}\right)L = \left(1 - \frac{1}{1.5}\right)L = \left(1 - \frac{2}{3}\right)L = \frac{L}{3}$$

# 26. (b)

(a) Strength from consideration of yielding

$$T_{dg} = \frac{A_g f_y}{\gamma_{mo}} = \frac{160 \times 8 \times 250}{1.1} \text{N}$$

= 
$$290909 \text{ N} = 290.909 \text{ kN} \simeq 290.91 \text{ kN}$$

(b) Strength from the consideration of rupture along the critical section

$$A_n = \left[b - nd_o + \frac{\sum P_{si}^2}{4g_i}\right]t$$

b = 160 mm,  $d_0 = 16 + 2 = 18$  mm,  $P_{si} = 40$  mm,  $g_i = 25$  mm

Critical section along section 1-1-1-1

$$A_n = (160 - 3 \times 18) \times 8 = 848 \text{ mm}^2$$

$$T_{dn} = \frac{0.9A_n f_u}{\gamma_{ml}} = \frac{0.9 \times 848 \times 410}{1.25} \text{ N} = 250.330 \text{ kN}$$

So, strength of plate = minimum of (a) and (b) i.e., 250.33 kN

### 27. (c)

Throat thickness of weld,

$$t_t = 0.7 \text{ s}$$
  
= 0.7 × 8 = 5.6 mm

Design stress in weld,

$$f_{wd} = \frac{f_u}{\sqrt{3} \gamma_{mw}} = \frac{410}{\sqrt{3} \times 1.25} = 189.4 \text{ N/mm}^2$$

Design strength of weld per mm length of cylinder

$$= 2 \times 189.4 \times 1 \times 5.6$$

 $P_d$  = Design fluid pressure inside the cylinder

Design hoop tension/pressure per mm length of cylinder

$$\Rightarrow P_d \frac{D}{2} = \frac{P_d \times 500}{2} = 2121.28$$

$$\Rightarrow P_d = 8.48 \text{ N/mm}^2$$

28. (c)

**Combined mechanism:** The possible location of plastic hinges are *A*, *C*, *D* and *E* only.



$$\begin{array}{lll} \Delta_1 &= \Delta_2 \\ 3\theta &= 6\theta_1 \\ \Rightarrow & \theta &= 2\theta_1 \\ & \text{External work done} &= \Sigma \text{ load} \times \text{Deflection} \\ &= 40 \times 2\theta + 20 + 3\theta \\ &= 140\theta \\ & \text{Internal work done} &= \Sigma \text{ plastic moment} \times \text{Rotation} \\ &= M_p\theta + 2M_p\theta + M_p\theta + M_p\theta_1 + M_p\theta_1 \\ &= M_p\theta + 2M_p\theta + M_p\theta + \frac{M_p\theta}{2} + \frac{M_p\theta}{2} \\ &= 5M_p\theta \end{array}$$

By the principle of virtual work:

Internal work done = External work done

$$\Rightarrow \qquad 5M_{p}\theta = 140\theta$$

$$\Rightarrow M_p = \frac{140}{5} = 28 \text{ kNm}$$

29. (a)

: Column is fixed at both ends.

$$kL = 0.65 \times 4 = 2.6 \text{ m}$$

$$r_{min} = 54 \text{ mm}$$

$$f_{cc} = \frac{\pi^2 E}{\left(\frac{kL}{r_{\min}}\right)^2} = \frac{\pi^2 \times 2 \times 10^5}{\left(\frac{2.6 \times 10^3}{54}\right)^2}$$

$$= 851.47 \text{ N/mm}^2$$

So non-dimensional effective slenderness ratio

$$\lambda = \sqrt{\frac{f_y}{f_{ec}}} = \sqrt{\frac{250}{851.47}} = 0.542$$

30. (b)

$$\beta = 1.4 - 0.076 \left(\frac{W}{t}\right) \left(\frac{f_y}{f_u}\right) \left(\frac{b_s}{L_c}\right)$$

$$W = 60 \text{ mm}, t = 6 \text{ mm}, f_y = 250 \text{ MPa}, f_u = 410 \text{ MPa}, b_s = 60$$

+ 50 - 6 = 104 mm, 
$$L_c$$
 = 3 × 50 = 150 mm

$$\beta = 1.08$$