
1. (d)

2. (b)

3. (c)

4. (d)

5. (d)

6. (d)

PROGRAMMING &
DATA STRUCTURES

ANSWER KEY

COMPUTER SCIENCE & IT
Date of Test : 17/08/2025

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

CLASS TEST S.No.: 01_SK_CS_ABCDEFGHIJKL_170825

7. (c)

8. (c)

9. (a)

10. (b)

11. (b)

12. (b)

13. (c)

14. (c)

15. (c)

16. (c)

17. (c)

18. (b)

19. (b)

20. (c)

21. (d)

22. (d)

23. (a)

24. (b)

25. (c)

26. (d)

27. (a)

28. (b)

29. (a)

30. (c)

© Copyright :www.madeeasy.in

8 Computer Science & IT

DE TAILED EXPL ANATIONS

1. (d)
Let, n = 3

r =

 1 2 3
1 1 3 8
2 3 2 5
3 8 5 3

− − 
 − − 
 − − 

1 + 2 + 3 + 2 × (– 3 – 8 – 5) = – 26 ≠
(1)

2
n n +

2. (b)
The tree constructed will be,

4

2 7

1 63 8

5

• ‘T’ has 4 leaf nodes.
• Subtree rooted at node ‘7’ satisfies the AVL property.

7

6 8

5

BF = 1

BF = 0

BF = 0

BF = 1
Θ BF =Balancing Factor

• In a heap, nodes are started from by most pointer, hence node ‘5’ is violating the basic heap
property.

3. (c)
Here both p and q are holding garbage values now we are trying to modify the string constant
here which is “GATE”, so it will generate run time error.

4. (d)
We can solve it using the operand stack or by converting it into infix i.e.

[(11 + 8) * (50 / 10)] – 2 = 93

5. (d)
A B C + – D *

A (B + C) – D *

(A – (B + C)) D *

(A – (B + C)) D *

6. (d)
• False: Two case labels cannot have same value.

© Copyright : www.madeeasy.in

9• Programming and Data StructuresCS

7. (c)
We have postorder traversal and the tree is BST so inorder traversal of BST is ascending order.
Thus, θ(n log n).
Using these two we can make unique tree.

8. (c)
First we need to traverse entire list for (p = list; p → next! = NULL; p = p → next);
when we reached at last node of list p → next! = NULL will be false and for loop terminated.
Now we add node q as the next node p : p → next = q;

9. (a)

50

102
103

a
50

51
155

b
a = a + + + + + b
a = 50 + 51
a = 101 + 1 = 102
b = b + + + + + a

= 51 + 103
b = 154 + 1 = 155

10. (b)
Option (b) is correct answer as it returns pointer to an integer.

11. (b)

foo(3)

foo(1) foo(2)+

1

(4)

(1 + 4) = 5

foo(0) +

2

foo(1)

2

0 1 2 3 4 5 6 7 8 9x

foo(foo(3)) ⇒ foo(5) // is 2x

foo(5) [14 + 40] = 54

foo(3) foo(4)+ [14 + 26][4 + 10]

foo(1) +

4

foo(2)

foo(0) +

5

foo(1)

5

[10] foo(2) + foo(3)

foo(0) +

7

foo(1)

7

[8 + 18]

foo(1) +

8

foo(2)

foo(0) +

9

foo(1)

9
∴ 54

© Copyright :www.madeeasy.in

10 Computer Science & IT

12. (b)
The given lower triangular matrix can be represented as

– 6 – 5 – 4 + 8

– 6
– 5
– 4
.
.
.
.
+ 8

a
a

a

.

.

.

.
a

11

21

31

81

a

a

.

.

.

.
a

22

32

82 a88.

a33

Let (i, j) be the element to be accessed.
We must cross upto (i – 1)th row.
Number of elements upto (i – 1)th row or 10th row

= 1 + 2 + 3 +........ + [(i – 1) – (lbi) + 1][lbi → lower bound of i]
= 1 + 2 + 3 + (3– (–6) + 1) = 1 + 2 + 3 + + (10)

=
10 11

2
×

 = 55

In ith row we must cross (j – lbj) elements. [lbj → lower bound of j]
= 2 – (–6) = 8

∴ In total = 55 + 8 = 63 elements need to be crossed.
Resulted address = Base address + Number of element crossed

1000 + 63 = 1063

13. (c)
In implementation of stack using queue :
If we do some extra work in inserting the element then deletion of second element from top of
stack required queue (n – 1) element in another queue then again (n – 1) i.e. (n – 2) element to
another queue so it take Ο(n) time.
In implementation of using stack; will take Ο(1) time to delete second element from front will
take Ο(1) time.

14. (c)

6

4

14

Double
Rotation 4

6

Single
Rotation14

16

32

4

6

Single
Rotation16

32

50

4

16

14

6

50

52

14

One double and two single rotations are required. So total 3 rotations.

© Copyright : www.madeeasy.in

11• Programming and Data StructuresCS

15. (c)

5

7 2

4

3

14 9 8

6

1

16. (c)

J S H A K Z A A O H E

2000

X

2000

y

y[10] = E
y[7] = A

y[10] – y[7]
= ASCII(E) – ASCII(A) = 4

x + y[10] – y[7] = 2004

17. (c)

86 86

25 2798 98

25

27

83 83

Balance86, 25, 98, 83, 27

Balance90, 71, 94 86

27 98

25

71 94

9083

86

27 94

25

71

9083 98

The order: 86, 25, 98, 83, 27, 90, 71, 94 will result the given AVL
Option (c) is correct.
[Note: Option (a) and option (b) will generate different AVL trees]

© Copyright :www.madeeasy.in

12 Computer Science & IT

19. (b)
Expected number of probes in “unsuccessful search”

=
1

1 − α

α =
n
m [Load factor]

⇒
m

m n− = 3

⇒ m = 3m – 3n

2m = 3n or α =
2
3

Expected number of probes in successful search

=
1 1ln

1
 
 α − α 

 =
3 ln 3 1.647
2

=

20. (c)
S2 : True. If it is not then this node with 1 child (non-leaf) will have height imbalance problem.
S1 : True. Node with two children gets replaced either by a successor or a predecessor.

21. (d)

0
x

0
y

1 1
2

4 6 8

2

= 0 1 2 3 4 5z

82

22. (d)

1

2

3
n = 3

1

2

3

4

4 3 nodes

4

4

n = 4

= 8

2

1

3 1 1

3

3

2

2= 4

Suppose = 2n
1

2

2

1
= 2

© Copyright : www.madeeasy.in

13• Programming and Data StructuresCS

Similarly, = 6n

5 nodes
16

5 nodes
16

= 16 + 16 = 32

23. (a)

90 98 99 96 84 70

a+0 a+1 a+2 a+3 a+4 a+5

a

S+0 S+1 S+2 S+3 S+4 S+5

S p+4 p+5 p+1 p p+2 p+3

Ptr S + 2

a+2 a+1 a a+3 a+4 a+5

p+0 p+1 p+2 p+3 p+4 p+5

p

∗∗∗ (ptr + 3) – ∗∗(p + 3) = (∗(∗(∗(S + 3 + 2)))) – (∗ (∗(p + 1)))
= (∗(∗(p + 3))) – (∗(a + 1))
= 96 – 98 = –2

24. (b)
Implement the stack where each entity stores two values:
1. Value = Current number.
2. CurMax = maximum of current number and numbers below the current number.

To implement:
Push: If stack size is 0, add an entry with value = current number and curmax = current. If stack
size >0 add an entry with value = current number and curmax = max (current number, curmax of
top value on stack).
Pop: Same as normal stack.
Max: Return curmax of top entry on stack.
Every entry will be of 8 B.
After all the operation 24 B are needed.

5

8

6

7

6

5

6

8

6

7

6

5
Value Curmax

Max = 6

Max = 6

© Copyright :www.madeeasy.in

14 Computer Science & IT

25. (c)
Applying recursion, traverse the linked list till the last element, hence at every step, the element
of the linked list will be stored in the stack. While coming back, print the elements, hence the
elements will be start printing from the end.
if (!head) return;

printlist (head → next);
printf(“%d”, head → data);

26. (d)

(a) 6, 8, 4, 7, 5

6
4
8
7
5

After popping element 6, only 4 can be popped, hence this permutation is not possible.

(b) 6, 4, 5, 7, 8

6
4
8
7
5

After performing pop operation on element 6, 4 now only element 8 can be popped.

(c) 6, 4, 7, 8, 5

6
4
8
7
5

After 6, 4 elements are popped, now element 7 can only be popped iff 8 has already been
popped.

(d) 7, 8, 4, 6, 5

5
7

pop (7)

5
8

pop (8)

5
4

pop (4)

5
6

pop (6)

5

pop (5)

27. (a)

Nontail (3)

Nontail (2) 3

2Nontail (1) Nontail (1)

1 1Nontail (0) Nontail (0) Nontail (0) Nontail (0)

Nontail (2)

2 Nontail (1)Nontail (1)

11 Nontail (0)Nontail (0)Nontail (0)Nontail (0)

Output: 1 2 1 3 1 2 1

© Copyright : www.madeeasy.in

15• Programming and Data StructuresCS

28. (b)
Queue will be empty when both REAR and FRONT will point to the same location.
i.e. REAR = FRONT.
Queue will be full when (REAR + 1) mod n = FRONT.
Example:

4

3

2

1

5
0 FRONT

REAR

here FRONT = 0 and REAR = 5
FRONT = (5 + 1) mod 6 = 0

29. (a)

Consider a stack 4
3
2
1

The characteristic of the stack is both insertions and deletions are performed from one end.
If, it is implemented with a link lists, then both insertions and deletions are needed to be performed
from the end.
Since, the linked list is a doubly circular linked list, hence the start node will have address of last
node.

Start 400 100 200 300200 300 400 100
100 200 300 400

So, both the operations can be performed in Ο(1) time.

30. (c)

14

9 24

14

9 24

24

924

24

9

14 16

2 rotations

24

14 29

34

14

9 24

16 29

14

9 24

16 29

34

9 16

1 rotation

© Copyright :www.madeeasy.in

16 Computer Science & IT

24

14 29

34

24

14

9 16

34

29 39169

39

24

14

9 16

34

29 39

20

24

14

9 16

34

29 39

20 27

1 rotation

