

MADE EASY

India's Best Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

REINFORCED CEMENT CONCRETE

CIVIL ENGINEERING

Date of Test: 07/08/2025

ANSWER KEY >

1.	(c)	7.	(c)	13.	(b)	19.	(a)	25.	(c)
2.	(c)	8.	(b)	14.	(a)	20.	(a)	26.	(d)
3.	(b)	9.	(d)	15.	(d)	21.	(c)	27.	(d)
4.	(a)	10.	(d)	16.	(c)	22.	(b)	28.	(a)
5.	(b)	11.	(a)	17.	(a)	23.	(d)	29.	(a)
6.	(b)	12.	(c)	18.	(d)	24.	(d)	30.	(b)

DETAILED EXPLANATIONS

1. (c

As per IS 456:2000, the pH of water shall not be less than 6. Here water source having pH = 6 may also be used but pH = 7 is most suitable.

2. (c)

Case I: (D.L. + L.L) combination

$$P_1 = 1 \times 60 + 1 \times 90 = 150 \text{ kN}$$

Case II: (D.L. + W.L. or E.L.) combination

As E.L. is more so take E.L. directly no need to check for WL

$$P_2 = 1 \times 60 + 150 \times 1 = 210 \text{ kN}$$

Case III: (D.L. + 0.8 (L.L) + 0.8 (W.L. or E.Q.) combination

$$P_2 = 1 \times 60 + 0.8 \times 90 + 0.8 \times 150 = 252 \text{ kN}$$

So, design load for serviceability = 252 kN

3. (b)

$$E_c = 5000\sqrt{f_{ck}} = 5000 \times \sqrt{25}$$
$$= 25000 \text{ N/mm}^2$$
$$= 25 \text{ kN/mm}^2$$

As per Cl. 6.2.3.1 of **IS 456: 2000**, the actual measured value may differ by ±20% from the above value.

So, range =
$$0.8 \times 25$$
 to 1.2×25
= 20 to 30 kN/mm²

4. (a)

Bearing strength for WSM = $0.25 \times f_{ck}$ (Cl. 34.4 of **IS 456 : 2000**) = 0.25×25 = 6.25 N/mm^2

5. (b)

B.M. at support next to the end support = $\frac{1}{10}w_d L^2 + \frac{1}{9} \times w_l l^2$ (Table 12 of **IS 456 : 2000**) = $\frac{1}{10} \times 6 \times 4.5^2 + \frac{1}{9} \times 3 \times 4.5^2$ = 18.9 kN-m

6. (b)

Development length for HYSD bars in compression

$$L_d = \frac{0.87 f_y \phi}{4 \tau_{bd} \times (1.6 \times 1.25)}$$
$$= \frac{0.87 \times 415 \times 20}{4 \times 1.4 \times 1.6 \times 1.25}$$
$$= 644.73 \text{ mm}$$

7. (c)

In general, bond strength is enhanced when the following measures are adopted:

- (i) Deformed bars are used instead of plain bars.
- (ii) Smaller bar diameters are used.
- (iii) Higher grade of concrete is used.
- (iv) Increased cover is provided around each bar.
- (v) Increased length of embedment, bends and hooks are provided.
- (vi) Mechanical anchorages are employed.
- (vii) Stirrups with increased area, reduced spacing and/or higher grade of steel is used.

8. (b)

Creep increases when:

- Cement content is high
- Water cement ratio is high
- Aggregate content is low
- Air entrainment is high
- Relative humidity is low
- Temperature is high
- Loading occurs at an early age
- Loading sustained over a long period.

9. (d)

As per IS 456: 2000, load distribution for a two way slab is given as

Load carried by beam A = Shaded area A

$$= \frac{1}{2} \times 4 \times 2 \times 10 = 40 \text{ kN}$$

i.e.,
$$\frac{40}{4} = 10 \text{ kN/m}$$

Load carried by beam B = Shaded area B

$$=\frac{1}{2}(6+2)\times2\times10=80 \text{ kN}$$

i.e.,
$$\frac{80}{6} = 13.3 \text{ kN/m}$$

10. (d)

As per Cl. 26.2.5 of IS 456 : 2000, splices in flexural members should not be provided where bending moment is more than 50 percent of the moment of resistance.

11. (a)

$$A_{sc} = 2 \times \frac{\pi}{4} \times 12^2 = 226.19 \text{ mm}^2$$

$$A_{st} = 3 \times \frac{\pi}{4} \times 20^2 = 942.48 \text{ mm}^2$$

For Fe415,

$$x_{u,\text{lim}} = 0.48 \times d = 0.48 \times 460 = 220.8 \text{ mm}$$

Actual depth of neutral axis can be computed as,

$$C = T$$

$$\Rightarrow 0.36 f_{ck} B x_u + (f_{sc} - 0.45 f_{ck}) A_{sc} = 0.87 f_y A_{st}$$

(Assuming tension steel as yielded)

$$\Rightarrow 0.36 \times 20 \times 250 \times x_u + (345 - 0.45 \times 20) \times 226.19 = 0.87 \times 415 \times 942.48$$

$$\Rightarrow$$

$$x_u = 146.82 \text{ mm} < x_{u,\text{lim}}$$
 (220.8 mm \Rightarrow Under reinforced section)

: Section is under reinforced, maximum strain in extreme concrete fibre 0.0035 will be From similar triangle concrete

$$\frac{\epsilon_{sc}}{x_u - d_c} = \frac{0.0035}{x_u}$$

$$\epsilon_{sc} = \frac{0.0035}{146.82} \times (146.82 - 40) = 2.54 \times 10^{-3} \simeq 0.00255$$

 $|\delta|$ = Downward defection due to UDL

- Upward deflection due to pre-stressing force

Deflection due to UDL
$$(\delta_1) = \frac{5}{384} \frac{wl^4}{E_c I_c}$$

 $E_c = 5000 \sqrt{f_{ck}} = 5000 \times \sqrt{35} \text{ N/mm}^2 = 29580.399 \text{ N/mm}^2$
 $I_c = \frac{bd^3}{12} = \frac{500 \times 750^3}{12} = 1.758 \times 10^{10} \text{ mm}^4$
 $\delta_1 = \frac{5}{384} \frac{wl^4}{E_c I_c} = \frac{5}{384} \times \frac{85(6000)^4}{(29580.399)(1.758 \times 10^{10})} = 2.76 \text{ mm} (\downarrow)$

Upward deflection due to prestressing force

$$\delta_2 = \frac{5}{48} \times \frac{Pel^2}{E_c I_c}$$

$$= \frac{5}{48} \times \frac{(1620 \times 10^3)(145)(6000)^2}{(29580.399)(1.758 \times 10^{10})} = 1.69 \text{ mm } (\uparrow)$$

$$\delta = \delta_1 - \delta_2 = 2.76 - 1.69 = 1.07 \text{ mm } (\downarrow)$$

13. (b)

:.

Column is fixed at one end and pinned at other end.

$$e_{\min} = \frac{L_0}{500} + \frac{D}{30}$$

$$= \frac{3200}{500} + \frac{400}{30}$$

$$= 19.73 \text{ mm} < 0.050D = 20 \text{ mm}$$

$$l_{\text{eff}} = 0.8 \times 3.2 = 2.56 \text{ m}$$

$$\lambda = \frac{256}{40} = 6.4 < 12$$
(OK)

:. It is a short column

$$P_{u} = 0.4 f_{ck} A_{c} + 0.67 f_{y} A_{sc}$$

$$\Rightarrow 1200 \times 10^{3} = 0.4 \times 20 \times \left[\frac{\pi}{4} \times 400^{2} - A_{sc} \right] + 0.67 \times 415 \times A_{sc}$$

$$\Rightarrow 1200 \times 10^{3} = 1005309.65 - 8A_{sc} + 278.05 A_{sc}$$

$$\Rightarrow A_{sc} = 720.94 \text{ mm}^{2}$$

Check: Minimum steel = 0.8% of gross area

$$= \frac{0.8}{100} \times \frac{\pi}{4} \times 400^2 = 1005.31 \text{ mm}^2 > A_{sc}$$

So provide

$$A_{sc} = 1005.31 \text{ mm}^2$$

14. (a)

Given: b = 200 mm, d = 350 mmPre-stressing force $= 3 \times 60 \times 1100 \times 10^{-3} \text{ kN}$

Eccentricity, $e = \frac{350}{2} - 90 = 85 \text{ mm}$

$$m = 6$$

Stress at the level of tendons = $\frac{P}{A} + \frac{Pe^2}{I}$ = $\frac{198 \times 10^3}{200 \times 350} + \frac{198 \times 10^3 \times 85^2}{\frac{200 \times 350^3}{12}} = 2.83 + 2.00 = 4.83 \text{ N/mm}^2$

Loss of stress due to elastic deformation = $m.f_c$

$$= 6 \times 4.83 = 28.98 \text{ N/mm}^2$$

Loss of prestressing force =
$$\frac{28.98 \times 3 \times 60}{1000}$$
 kN = 5.22 kN \approx 5.2 kN

15. (d)

For axially loaded column,

$$e_{\min} = \max \left\{ \frac{L}{500} + \frac{B \text{ or } D}{30} < 0.05 (B \text{ or } D) \right\}$$

$$= \max \left\{ \frac{3000}{500} + \frac{400}{30} = 19.33 < 0.05 (B \text{ or } D) = 20 \text{ mm} \right\}$$

$$= \max \left\{ \frac{3000}{500} + \frac{400}{30} = 19.33 < 0.05 (B \text{ or } D) = 20 \text{ mm} \right\}$$

$$P_u = 0.4 f_{ck} A_c + 0.67 f_y A_{sc}$$

 $P_v = 0.4 f_{ck} [A_g - A_{sc}] + 0.67 f_y A_{sc}$ $A_c = \text{Area of concrete}$

 A_{φ} = Gross area of column

 A_{sc}° = Area of compression steel

$$1650 \times 10^3 = 0.4 \times 20 \left[400^2 - A_{sc} \right] + 0.67 (500) A_{sc}$$

$$1650 \times 10^3 = 1280000 - 8 A_{sc} + 335 A_s$$

$$A_{\rm sc} = 1131.498 \, \rm mm^2 \simeq 1131.50 \, \rm mm^2$$

 $1650\times 10^3 = 1280000 - 8\,A_{sc} + 335\,A_{sc}$ $A_{sc} = 1131.498~\rm mm^2 \simeq 1131.50~\rm mm^2$ But as per IS 456, $(A_{sc})_{\rm min} = 0.8\%$ of cross-sectional area

$$= \frac{0.8}{100} \times 400^2 = 1280 \,\mathrm{mm}^2$$

$$\therefore A_{sc} = 1280 \text{ mm}^2$$

16. (c)

Let,

where

$$A_c$$
 = Area of concrete

$$\frac{75}{500} = \frac{y}{500 - x_u}$$

 \Rightarrow

$$y = 75 \left(\frac{500 - x_u}{500} \right)$$

Width of section at neutral axis i.e., $b_{NA} = 250 + 2y$

Average width of beam section is compression

$$= \frac{1}{2} (400 + b_{NA})$$

$$= \frac{1}{2} \left[650 + 150 \left(\frac{500 - x_u}{500} \right) \right]$$

$$= (400 - 0.15x_u)$$

$$C = T$$

$$\Rightarrow 0.36f_{ck} \ b_{avg} \ x_u = 0.87 \ f_y \ A_{st}$$

$$\Rightarrow 0.36 \times 25 \times (400 - 0.15x_u)x_u = 531826.65$$

$$\Rightarrow x_u^2 - 2666.7 \ x_u + 393945.67 = 0$$

$$\therefore x_u = 157 \ \text{mm} = 15.7 \ \text{cm}$$

17. (a)

$$(\tau_{\text{ve}})_{\text{developed}} = \frac{P_o - w_o [(a+b)(b+d)]}{2(a+d+b+d) \times d}$$

 \therefore Critical section for two way shear will be at $\frac{d}{2}$ distance from column face

$$d/2$$

$$b \qquad b+d$$

$$a$$

$$d/2$$

$$a+d$$

$$\begin{split} (\tau_{\rm ve})_{\rm developed} \; &= \; \frac{1300 - 205 \big[(0.4 + 0.75)(0.5 + 0.75) \big]}{2 \big[0.75 \times (0.4 + 0.75 + 0.5 + 0.75) \big]} \; kN/m^2 \\ &= \; 0.279 \; N/mm^2 \simeq 0.28 \; N/mm^2 \end{split}$$

18. (d)

$$P_L = P_0 [kx + \mu \alpha]$$

$$\alpha = \frac{4h}{l}$$

$$\tan \alpha = \frac{4 \times 250}{12000} = 0.0833 (\therefore \alpha = 4.76^\circ = 0.0831 \text{ radian})$$

 $k = 0.15 \text{ per } 1000 \text{ m} = \frac{0.15}{1000} \text{ per m}$ Given,

x = 6.0 m {as loss is asked at mid-span of beam}

$$P_L = 1200 \left[\frac{0.15}{1000} \times 6.0 + 0.35 \times 0.0831 \right]$$

 $P_L = 35.982 \text{ kN} \simeq 36 \text{ kN}$

19. (a)

The given trapezoidal cable profile of prestressing wire reflects the bending moment diagram due to the two point loads.

Given:

$$Q = 40 \text{ kN}, e = 100 \text{ mm}$$

$$L = 9 \,\mathrm{m}$$

P = Prestressing force

For balancing the bending effect,

$$P \times e = \frac{QL}{3}$$

$$\Rightarrow \qquad P \times 100 = \frac{40 \times 10^3 \times 9000}{3}$$

$$\Rightarrow$$
 $P = 1200 \text{ kN}$

20.

Loss of stress due to creep= $\in_{cc} f_c E_s$

where,

$$f_c = f_{c_1} + \frac{2}{3} (f_{c_2} - f_{c_1})$$

$$f_{c1} = 8 \text{ MPa}$$

$$f_{c1} = 8 \text{ MPa}$$

 $f_{c2} = 14 \text{ MPa}$

$$f_c = 8 + \frac{2}{3}(14 - 8) = 8 + \frac{2}{3} \times 6 = 12 \text{ MPa}$$

:. Loss of stress =
$$30 \times 10^{-6} \times 12 \times 210 \times 10^{3} = 75.6 \text{ MPa}$$

21. (c)

$$\frac{0.0035 - 0.75 \in_{m}}{1.1D} = \frac{\in_{m}}{0.1D}$$

$$11.75 \in m = 0.0035$$

:. Strain in extreme compression fibre,

22. (b)

$$V_u = 80 \times 10^3 \text{ kN}$$

$$P_t = \frac{100 \times 4 \times \frac{\pi}{4} \times 12^2}{250 \times 400} = 0.452\%$$

Using the table to get τ_c corresponding to

$$P_t = 0.452\%$$

$$\frac{0.48 - 0.36}{0.5 - 0.25} = \frac{0.48 - x}{0.5 - 0.452}$$

$$\Rightarrow x = \tau_c = 0.457 \text{ MPa}$$

$$\tau_v = \frac{80 \times 10^3}{250 \times 400} = 0.8 \text{ MPa}$$

$$V_{us} = V_u - \tau_c b d$$

$$= 80 \times 10^3 - 0.457 \times 250 \times 400 = 34300 \text{ N}$$

Since vertical stirrups,

$$S_v = \frac{0.87 f_y A_{sv} d}{V_{us}}$$

$$\therefore 280 = \frac{0.87 \times 250 \times 2 \times \frac{\pi}{4} \phi^2 \times 400}{34300}$$

$$\Rightarrow \phi = 8.38$$

Let us provide 10 mm dia. stirrups.

23. (d)

From strain diagram,

$$\frac{0.004}{x_u} = \frac{0.0025}{x}$$

$$\Rightarrow \qquad x = \frac{0.0025}{0.004} x_u$$

$$\Rightarrow \qquad x = \frac{5}{8} x_u$$

:. Total compressive force,

$$C = C_{\text{linear}} + C_{\text{parabolic}}$$

$$C = 0.446 f_{ck} \times (x_u - x) \times b + \frac{2}{3} \times 0.446 f_{ck} \times x \times b$$

$$\Rightarrow \qquad C = 0.446 f_{ck} \left(x_u - \frac{5}{8} x_u \right) \times b + 0.185 f_{ck} b \left(\frac{5}{8} x_u \right)$$

$$\Rightarrow$$
 $C = 0.167 f_{ck} bx_u + 0.185 f_{ck} bx_u$

$$\Rightarrow C = 0.167 f_{ck} bx_u + 0.185 f_{ck} bx_u$$

$$\Rightarrow C = 0.352 f_{ck} bx_u = 0.352 \times 25 \times bx_u$$

$$\Rightarrow \qquad C = 8.8 \ bx_u$$

24. (d)

$$\frac{P_u}{f_{ck}bd} = \frac{540 \times 10^3 \text{ N}}{20 \times 300 \times 300} = 0.3$$

For
$$\frac{P_u}{f_{ck}bd} = 0.3$$
, $\frac{M_u}{f_{ck}bd^2} = 0.2$ from interaction curve diagram

Hence,
$$M_u = 0.2 \times 20 \times 300 \times 300^2 \,\text{Nmm}$$

= 108 kNm

25. (c)

Determining the depth of N.A.

Let N.A. lies in the flange i.e.

$$\begin{array}{ccc} x_u \leq D_f \\ C = T \\ \Rightarrow & 0.36 \, f_{ck} \, bx_u = 0.87 \, f_y \, A_{st} \end{array}$$

$$\Rightarrow x_{u} = \frac{0.87 \times 415 \times 4 \times \frac{\pi}{4} \times 20^{2}}{0.36 \times 20 \times 800}$$

$$= 78.77 \text{ mm} \le D_{f} (= 80 \text{ mm})$$

Hence, N.A. lies in flange

For Fe415,
$$x_{u,\text{lim}} = 0.48 \times 400 = 192 \text{ mm} > x_u \text{ (= 78.77 mm) OK}$$

So, section is underreinforced

$$\therefore \qquad \text{MOR} = 0.87 f_y A_{st} (d - 0.42 x_u)$$

$$= 0.87 \times 415 \times 4 \times \frac{\pi}{4} \times 20^2 \times (400 - 0.42 \times 78.77) \text{ Nmm}$$

$$= 166.47 \text{ kNm}$$

26. (d)

Initial stress in wires =
$$\frac{300 \times 10^3 \text{ N}}{200 \text{ mm}^2} = 1500 \text{ N/mm}^2$$

For post tensioned beam, total residual shrinkage strain = $\frac{2 \times 10^{-4}}{log(t+2)} = \frac{2 \times 10^{-4}}{log(18+2)} = 1.537 \times 10^{-4}$

Loss of stress =
$$210 \times 10^3 \times 1.537 \times 10^{-4} = 32.277 \text{ MPa}$$

Percentage loss of stress =
$$\frac{32.277}{1500} \times 100 = 2.15\%$$

27. (d)

28. (a)

Fundamental time period of vibration as per Cl. 7.6.2 (c) of IS 1893: 2016 (part-I) is.

$$T = \frac{0.09H}{\sqrt{D}}$$
 (Here, $H = 70$ m, $D = 16$ m in short direction)

$$T = \frac{0.09 \times 70}{\sqrt{16}} = 1.575 \text{ sec} \approx 1.6 \text{ sec}$$

29. (a)

$$\tan \alpha \nleq 0.9 \sqrt{\frac{100 \times q_0}{f_{ck}} + 1}$$

$$\Rightarrow \frac{350}{\frac{b - 400}{2}} \nleq 0.9 \sqrt{\frac{100 \times 6}{25} + 1}$$

$$\Rightarrow \frac{700}{b - 400} \nleq 4.5$$

$$\Rightarrow 155.56 \nleq b - 400$$

$$\Rightarrow b \ngeq 555.56 \text{ mm}$$

30. (b)

The maximum strain in concrete at outermost compression fibre is flexural compression is 0.0035.