

## **MADE EASY**

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

**Web:** www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

# **SURVEYING**

### **CIVIL ENGINEERING**

Date of Test: 29/07/2025

#### ANSWER KEY >

| 1. | (b) | 7.  | (b) | 13. | (c) | 19. | (c) | 25. | (c) |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 2. | (a) | 8.  | (a) | 14. | (b) | 20. | (c) | 26. | (c) |
| 3. | (c) | 9.  | (b) | 15. | (d) | 21. | (a) | 27. | (b) |
| 4. | (c) | 10. | (a) | 16. | (b) | 22. | (c) | 28. | (b) |
| 5. | (c) | 11. | (b) | 17. | (c) | 23. | (b) | 29. | (d) |
| 6. | (b) | 12. | (d) | 18. | (a) | 24. | (c) | 30. | (d) |
|    |     |     |     |     |     |     |     |     |     |

### **DETAILED EXPLANATIONS**

1. (b)

Relief displacement, 
$$d = \frac{r \cdot h}{H} = \frac{90 \times 450}{3500} = 11.57 \text{ mm}$$

2. (a)

$$1 \text{ cm} = 75 \text{ m}$$
  $\Rightarrow$   $Scale = \frac{1}{7500}$ 
 $1 : 35000$   $\Rightarrow$   $Scale = \frac{1}{35000}$ 
 $RF = \frac{1}{250000}$   $\Rightarrow$   $Scale = \frac{1}{250000}$ 
 $1 \text{ cm} = 50 \text{ km}$   $\Rightarrow$   $Scale = \frac{1}{50 \times 10^3 \times 10^2} = \frac{1}{5000000}$ 

 $\therefore$  Largest scale is 1 cm = 75 m

3. (c)



4. (c)

For a well conditioned triangle interior angle  $\geq 30^{\circ}$  and  $\leq 120^{\circ}$ 

:. Triangles 3 and 4 are not well conditioned triangles.

5. (c)

Folds may be defined as undulations or bends or curvatures developed in the rocks of the crust as a result of stresses to which these rocks have been subjected from time to time.

#### 6. (b)

$$S = \frac{f}{H - h}$$

$$\Rightarrow \frac{1}{10000} = \frac{15 \times 10^{-2}}{H - 300}$$

$$\Rightarrow H = 1800 \text{ m}$$

#### 7. (b)

Difference between longitude =  $23^{\circ}45' - (-21^{\circ}30') = 45^{\circ}15'$ 

- 8. (a)
  - Least count of main scale of theodolite is 20 sec.
  - River is obstacle for chaining only.
  - Line joining places of equal dip is called isoclinic line.
- 9. (b)
  - Tilt is rotation of aerial camera about the line of flight.
  - Tip is rotation of aerial camera about a horizontal axis normal to the line of flight. It is also known as swing.
  - Isocenter is the point on an aerial photograph in which the bisector of the angle of tilt meets the photograph.
  - Altitude is vertical distance of aircraft above the earth's surface.
- 10. (a)

Plane table is oriented by trough compass, backsighting or resection.

11. (b)

Map is the orthographic projection of the Earth's surface.

- 12. (d)
- 13. (c)

Total area covered = 
$$25.75 + (15 - 1) \times 25.75 \times 0.4$$
  
=  $169.95 \text{ km}^2$ 

- 14. (b)
- 15. (d)

First RL = 51.45 m, Last RL = 63.50 m  

$$\Sigma$$
BS = 87.755 m,  $\Sigma$ FS = 73.725 m

When there is no error, then

$$\Sigma BS - \Sigma FS = Last RL - First RL$$
 ...(i)

The difference between LHS and RHS is the closing error of the work

$$\Sigma BS - \Sigma FS = 87.755 - 73.725 = 14.03 \text{ m}$$
Last RL - First RL = 63.50 - 51.45 = 12.05 m

Closing error = 14.03 - 12.05 = 1.98 m

16. (b)

Normal equation of *A* is

$$= \frac{2 \times (2A) + 3 \times (4A)}{2 \times 2 + 3 \times 4}$$

$$A = \frac{160^{\circ} 50' 0''}{16} = 10^{\circ} 3' 8''$$

17. (c)



From  $\Delta$  BEF (approximately), we have

$$\tan \alpha \simeq \alpha = \frac{S}{D}$$
 (for small values of  $\alpha$ ,  $\tan \alpha \simeq \alpha$ ) ...(i)

Similarly, from  $\triangle AOB$ ,

$$\alpha = \frac{AB}{R} = \frac{nl}{R} \qquad \dots (ii)$$

where

n =number of division deviations

l = length of one division on the bubble tube

R = radius of curvature of bubble

Equating (i) and (ii), we get

$$\frac{S}{D} = \frac{nl}{R}$$

$$R = \frac{nlD}{S} = \frac{5 \times 2 \times 10^{-3} \times 100}{0.050} = 20 \text{ m}$$

18. (a)

Correct volume = 
$$\left(\frac{l'}{l}\right)^3 \times \text{Computed volume}$$
  
=  $\left(\frac{20.15}{20}\right)^3 \times 10000 = 10226.69 \text{ m}^3$ 

19. (c)

$$L = T$$

$$2R \sin \frac{\Delta}{2} = R \tan \frac{\Delta}{2}$$

$$\Rightarrow 2\sin\frac{\Delta}{2} = \frac{\sin\frac{\Delta}{2}}{\cos\frac{\Delta}{2}}$$

$$\Rightarrow \cos\frac{\Delta}{2} = \frac{1}{2}$$

$$\Rightarrow \Delta = 120^{\circ}$$

#### 20. (c)

The vertical circle at right angles to the celestial meridian and passing through the east and west points of the celestial horizon is called prime vertical.

#### 21. (a)

- In prismatic compass box is attached with graduated ring, which rotates.
- Surveyor compass measures quadrantal circle bearing.

#### 22. (c)

Least count = 
$$\frac{S}{n}$$

$$5'' = \frac{(1/5)^{\circ}}{n}$$

$$\Rightarrow \frac{5}{3600} = \frac{1/5}{n}$$

$$\therefore \qquad n = 144$$

For retrograde vernier n + 1 divisions of main scale equals to n divisions of vernier scale.

: 145 divisions of main scale should be equal to 144 divisions of vernier scale.

#### 23. (b)

As per bowditch rule, error in linear measurement is proportional to  $\sqrt{l}$  and error in angular measurement is inversely proportional to  $\sqrt{l}$ , where l is length of line.

#### 24. (c)

If effect of refraction ignored, then

$$h = \frac{D^2}{2R} \qquad \left(R = \frac{12800}{2} \text{ km}\right)$$

$$\Rightarrow \qquad 100 = \frac{D^2}{2 \times 6400 \times 1000}$$

$$\Rightarrow \qquad D = \sqrt{100 \times 2 \times 6400 \times 1000}$$

$$\Rightarrow \qquad D = 35777.088 \text{ m} \approx 35.8 \text{ km}$$

25. (c)

Slope correction = 
$$\frac{-h^2}{2L}$$

For 300 m length measurement,  $h = \frac{1}{20} \times 300 \text{ m} = 15 \text{ m}$  (as per given slope of 1 : 20)

$$\therefore \qquad \text{Slope correction} = \frac{-15^2}{2 \times 300} = -0.375 \,\text{m}$$

:. Horizontal distance = 300 - 0.375 = 299.625 m

26. (c)

$$A = l \times b = 80 \text{ m}^2$$

$$\frac{\partial A}{\partial l} = b = 8 \text{ m}$$
  $e_l = 0.05 \text{ m}$ 

$$\frac{\partial A}{\partial h} = l = 10 \text{ m}$$
  $e_b = 0.03 \text{ m}$ 

$$e_A = \pm \sqrt{\left(e_l \frac{\partial A}{\partial l}\right)^2 + \left(e_b \frac{\partial A}{\partial b}\right)^2}$$

$$e_A = \pm \sqrt{(0.05 \times 8)^2 + (0.03 \times 10)^2}$$

$$e_A = \pm 0.5 \text{ m}^2$$

27. (b)



$$FB_{AB} = N30^{\circ}E$$

Internal angle of pentagon = 108°



29. (d)



$$TB = MB + \delta_E = 138^{\circ} 44' + 2^{\circ}12' = 140^{\circ} 56'$$

30. (d)

 $a_1$  = Staff reading at A when instrument is at A = 1.800 m  $b_1$  = Staff reading at B when instrument is at A = 3.300 m  $a_2$  = Staff reading at A when instrument is at B = 0.500 m  $b_2$  = Staff reading at B when instrument is at B = 2.080 m  $\Delta h = \frac{(a_1 - b_1) + (a_2 - b_2)}{2} = -1.540$  m (Fall from A to B)

:. True reading at A when instrument is at B = 2.080 - 1.540 (Rise from B to A) = 0.540 m