

MADE EASY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

INDUSTRIAL ENGINEERING

MECHANICAL ENGINEERING

Date of Test: 24/07/2025

ANSWER KEY ➤

1.	(d)	7.	(a)	13.	(b)	19.	(c)	25.	(c)
2.	(d)	8.	(b)	14.	(d)	20.	(b)	26.	(d)
3.	(b)	9.	(c)	15.	(d)	21.	(a)	27.	(c)
4.	(a)	10.	(a)	16.	(a)	22.	(b)	28.	(a)
5.	(d)	11.	(d)	17.	(a)	23.	(d)	29.	(c)
6.	(c)	12.	(a)	18.	(d)	24.	(d)	30.	(a)

DETAILED EXPLANATIONS

- 1. (d)
- 2. (d)

We know that,

$$\left(\frac{P}{V}\right)_{\text{ratio}} = \frac{(S-V)}{S} \times 100\% = \frac{(1000000 - 650000)}{1000000} \times 100\%$$

= 35%

BEP =
$$\frac{\text{Fixed cost}}{\left(\frac{P}{V}\right)_{\text{ratio}}} = \frac{90000}{0.35} = ₹257142.86$$

$$(BEP)_{sales} \approx 257143$$

3. (b)

Network diagram:

4. (a)

Labour productivity =
$$\frac{\text{Aggregate output}}{\text{Expenses on labour}} = \frac{9000}{16 \times 350} = \frac{9000}{5600} = 1.607 \approx 1.61$$

5.

In VED method inventories are classified on the basis of importance for the production system.

 $V \rightarrow Vital$

 $E \rightarrow Essential$

 $D \rightarrow Desirable$

6. (c)

Where,

D = Total demand

C = Cost per unit

 C_h = Holding cost

 C_0 = Ordering cost

 Q^* = Quantity ordered at EOQ.

Given, Total worth = ₹100000

 $D \times C = 100000$

 $C_0 = 1.5\% \text{ of } (Q^* \times C)$ $C_h = 8\% \text{ of } C$

$$Q^* = \sqrt{\frac{2DC_0}{C_h}} = \sqrt{\frac{2 \times \left(\frac{100000}{C}\right) \times 1.5 \times Q^* \times C \times 100}{100 \times 8 \times C}} = \sqrt{\frac{150000 \times Q^*}{4 \times C}}$$

$$(Q^*)^2 = 37500 \times \frac{Q^*}{C}$$

$$(Q^* \times C) = ₹37500$$

7. (a)

Only point O, A, B and C will be considered in graphical method for optimal solution.

8. (b)

$$EOQ = \sqrt{\frac{2DC_0}{C_h}} = \sqrt{\frac{2 \times 80 \times 200}{0.05}} = 800 \text{ unit}$$

$$T^* = \frac{800}{80} = 10 \text{ days}$$

$$\therefore$$
 Lead time > T^*

Then, Effective lead time =
$$LT - T^* = 15 - 10$$

= 5 days

Reorder level (Demand during efficiency lead time) = (Effective lead time) × (Demand/day) = $5 \times 80 = 400 \text{ kg}$

9. (c)

Weekly standard deviation is σ .

Standard deviation σ' corresponding to lead time will be,

$$(\sigma')^2 = \sigma^2 + \sigma^2 + \sigma^2 + \sigma^2 + \sigma^2$$

$$\sigma' = (\sqrt{5})\sigma$$

For 95% service level,

(Z = 1.645 for 95% service level)

Safety stock,
$$SS = Z.\sigma' = 1.645 \times \sqrt{5}\sigma = 3.6783\sigma$$

 $SS = 3.68\sigma$

10. (a)

Primal ⇔ Dual

Maximize ⇒ Minimize

Coefficient of objective function ⇒ Constraints

Constraints ⇒ Coefficient of objective function

11. (d)

$$MAD = \frac{\sum_{i=1}^{n} |D_i - F_i|}{n} = \frac{\{|110 - 96| + |124 - 127| + |119 - 134| + |134 - 112|\}}{4}$$

$$= \frac{14 + 3 + 15 + 22}{4} = \frac{54}{4}$$

$$RSFE = \sum_{i=1}^{n} (D_i - F_i)$$

$$= (110 - 96) + (124 - 127) + (119 - 134) + (134 - 112)$$

$$= 14 - 3 - 15 + 22 = 18$$

$$\frac{RSFE}{MAD} = \frac{18}{(54/4)} = \frac{18 \times 4}{54} = 1.333$$

12. (a)

Minimum processing time on M_1 is = 7

Maximum processing time on M_2 is = 5

Maximum processing time on M_3 is = 6

Minimum processing time on M_4 is = 6

Minimum $M_{1i} \ge \text{Maximum } M_{2i}$, Maximum M_{3i}

Minimum $M_{4i} \ge \text{Maximum } M_{2i'}$ Maximum M_{3i}

We can reduce this problem to n jobs on 2 machines. Processing times $M_{1j} + M_{2j} + M_{3j}$ and $M_{4j} + M_{2j} + M_{3j}$ for each job and solving the problem.

Jobs Combination of Machines	P	Q	R	S	Т
$M_1 + M_2 + M_3$	18	20	12	15	19
$M_2 + M_3 + M_4$	20	21	14	9	15

Hence the required optimum sequence is R - P - Q - T - S.

13. (b)

S.I. =
$$\sqrt{\sum_{i=1}^{n} (\text{Max. station time } - \text{station time})^2}$$

S.I. = $\sqrt{(12-12)^2 + (12-10)^2 + (12-11)^2 + (12-7)^2 + (12-t)^2}$
 $\sqrt{39} = \sqrt{0+4+1+25+(12-t)^2}$

Squaring on both side,

$$39 = 30 + (12 - t)^{2}$$

$$9 = (12 - t)^{2}$$

$$\pm 3 = 12 - t$$

© Copyright: MADE EASY

www.madeeasy.in

Taking (+) sign, t = 12 - 3

t = 9 minutes

Taking (-) sign, t = 12 + 3 = 15 minutes. Not feasible because max. station time is given in problem as 12 minutes.

14. (d)

Year(X)	Demand in 100 units(y)	Deviation of x from 2010(x)	x ²	xy
2007	85	-3	9	-255
2008	75	-2	4	-150
2009	80	-1	1	-80
2010	72	0	0	0
2011	65	1	1	65
2012	60	2	4	120
2013	55	3	9	165
n = 7	$\Sigma y = 492$	$\Sigma x = 0$	$\Sigma x^2 = 28$	$\Sigma xy = -135$

$$\Sigma y = \Sigma a + b\Sigma x$$

$$\Rightarrow \qquad \qquad \Sigma y = na + b\Sigma x$$

$$\Rightarrow \qquad 492 = 7 \times a + 0$$

$$\Rightarrow \qquad \qquad a = 70.2857$$

$$\Sigma xy = a\Sigma x + b\Sigma x^2$$

$$\Rightarrow \qquad -135 = 0 + b \times 28$$

$$\Rightarrow \qquad b = -4.82143$$

Best line of fit,
$$y = a + bx = (70.2857 - 4.82143x)$$

Demand in 2015 = $(70.2857 - 4.82143 \times 5) \times 100 = 4617.856$ units.

15. (d)

$$(BEP)_1 = \frac{F_1}{(s-v)_1} = \frac{2700000}{(54-45)} = 300000$$

$$(BEP)_2 = \frac{F_2}{(s-v)_2}$$

 \therefore (BEP) is same so, (BEP)₂ = 300000

$$300000 = \frac{F_2}{(54 \times 1.12 - 45 \times 1.10)}$$

Profit = Sale
$$-$$
 (F.C. + V.C.)

$$= 54 \times 1.12 \times 350000 - (3294000 + 1.1 \times 45 \times 350000)$$

Profit = ₹ 549000 = ₹ 5.49 lakh

16. (a)

Assigning elements to various work stations, we have the four work stations in the order given below:

	Work element	Station time
Work station I	А, С	1.0 min
Work station II	В, D	1.0 min
Work station III	E, F, G	0.9 min
Work station IV	Н, І	1.0 min

n = No. of work station

Balance delay =
$$1 - \frac{TWC}{n \times T_c}$$

= $1 - \frac{3.9}{4 \times 1} = \frac{4 - 3.9}{4} = \frac{0.1}{4} = \frac{0.1 \times 100\%}{4} = 2.5\%$

- 17. (a)
- 18. (d)
- 19. (c)

Total fixed expenses

Break even point = $\frac{\text{Weighted average selling price - weighted average variable expenses}}{\text{Weighted average selling price - weighted average variable expenses}}$

Weighted average unit selling price = $\frac{300}{900} \times 5 + \frac{200}{900} \times 8 + \frac{400}{900} \times 7 = \text{Rs. } 6.556$

Weighted average unit variable expense = $\frac{300}{900} \times 2 + \frac{200}{900} \times 5 + \frac{400}{900} \times 4 = \text{Rs. } 3.566$

Break even point =
$$\frac{1200}{(6.556 - 3.556)}$$
 = 400 units
Break even sale = 400 × (weighted average selling price)
= 400 × 6.556
= Rs. 2622.4 \simeq Rs. 2620

20. (b)

We can clearly see from given options that margin of safety is in terms of cost.

So, MOS = Actual sale - sale at break even point
$$= sx - sx_{BEP}$$
$$= s(x - x_{BEP})$$
$$= s\left(x - \frac{F}{s - v}\right) \text{ which is (a) option.}$$

Similarly if we check for (c) and (d) option.

$$\frac{P}{PV \text{ ratio}} = \frac{sx - vx - F}{\left(\frac{s - v}{s}\right)} = s\left(x - \frac{F}{s - v}\right) = s(x - x_{\text{BEP}})$$

$$s\left(\frac{CM}{s - v} - \frac{F}{s - v}\right) = s\left(\frac{sx - vx}{s - v} - \frac{F}{s - v}\right)$$

$$= s(x - x_{BEP})$$

21. (a)

Given, Stockout cost, C_s = Rs. 50 per item per year

Carrying cost,
$$C_h = \frac{5}{100}C_s = 0.05 C_s = \text{Rs. 5}$$
 per item per year

$$EOQ$$
, $Q = 441$ items

Stockout cost =
$$\frac{Q_s}{2} \times \frac{t_s}{T} \times c_s$$

we know,

$$\frac{Q_m}{Q_s} = \frac{C_s}{C_h}$$

$$\Rightarrow$$

$$Q_s = \frac{C_h Q}{C_s + C_h}$$

$$\frac{t_m}{t_s} = \frac{Q_m}{Q_s} = \frac{C_s}{C_h}$$

$$\Rightarrow$$

$$t_s = \left(\frac{C_h}{C_s + C_h}\right) \times T$$

$$\Rightarrow \qquad \text{Stock out cost} = \frac{1}{2} \left(\frac{C_h}{C_s + C_h} \right)^2 QC_s$$

$$= \frac{1}{2} \times \left(\frac{0.05}{1 + 0.05}\right)^2 \times 441 \times 50 = \frac{1}{2} \times \frac{5^2}{105^2} \times 441 \times 50$$

$$=\frac{1}{2} \times \frac{5^2}{(5 \times 21)^2} \times 21^2 \times 50 = \text{Rs. 25 per year}$$

22. (b)

Let P_n denote that there are n persons in the system, then $P_n = \rho^n(1 - \rho)$.

For atleast 2 persons in the queue, these must be atleast 3 persons in the system.

So,P(atleast 2 persons in the queue) = $1 - P_0 - P_1 - P_2$

$$= 1 - (1 - \rho) - \rho(1 - \rho) - \rho^2(1 - \rho)$$

(supply constraint)

(0, 160)

(0, 125)

23. (d)

Let *x* and *y* be the units manufactured of chair and table respectively.

then $2x + 1.5y \le 8 \times 30$ (hour constraints)

also $50x + 60y \le 7500$

$$\Rightarrow \frac{x}{150} + \frac{y}{125} = 1$$

Profit, Z = Rs.(9x + 8y)

$$Z(O) = Rs.0$$

Z(A) = Rs.1080

$$Z(C) = \text{Rs.}(8 \times 125)$$

= Rs. 1000

As Z(B) is maximum, maximum profit will be Rs 1163.33

24. (d

For 'A' category item, low inventory is kept while for 'C' category item inventory is kept almost full.

25. (c)

26. (d)

Given, arrival rate, $\lambda = 3$ customers per hours

service rate, $\mu = \frac{60}{15} = 4$ customers per hour

Using little's law,

Average length in queue = arrival rate × average waiting time in queue.

$$\Rightarrow \qquad \qquad L_q = \lambda \times W_q \qquad \qquad ...(1)$$

As $L_q = \frac{\rho^2}{1-\rho}$ (where ρ is system utilization)

and $\rho = \frac{\lambda}{\mu} = \frac{3}{4}$

from equation (1)

© Copyright: MADE EASY

$$\frac{9}{4} = \left(\frac{3}{\text{hour}}\right) \times W_q$$

$$W_q = \frac{3}{4} \text{hours} = 45 \text{ minutes}$$

27. (c)

 \Rightarrow

Demand	Probability	Cumulative probability	
10	0.04	0.04	
15	0.08	0.12	
20	0.13	0.25	p(S-1) $p(S)$
25	0.26	0.51	p(S)
30	0.31	0.82	
35	0.09	0.91	
40	0.09	1.00	

Potential profit, $p = S_p - C + C_b$

 $S_p \rightarrow \text{Selling price/unit}$

 $C \rightarrow$ Purchasing cost/unit

 $C_h \rightarrow \text{Back ordering or goodwill loss/unit}$

$$p = 12 - 8 + 1.5$$

$$= ₹5.5$$

$$l = C - C_s + C_h$$

$$C_s = \text{Scrap value/unit}$$

Loss per unit,

 C_h = Holding cost/unit

l = 8 - 2 + 0

1 = ₹6

$$p(S-1) \le \frac{p}{p+l} \le p(S)$$

$$\frac{p}{p+l} = \frac{5.5}{5.5+6} = 0.4783 = 47.83\%$$

So, for optimum profit number of newspaper purchased is 25.

28. (a)

$$P(W_s \ge T) = e^{-T/W_s}$$

$$0.08 = e^{-12/W_s}$$

$$\ln(0.08) = -\frac{12}{W_s}$$

$$W_s = -\frac{12}{\ln(0.08)} = \frac{-12}{-2.52573} = \frac{-12}{-2.526} = 4.75 \text{ min}$$

$$W_s = \left(\frac{\rho}{1-\rho}\right) \times \frac{1}{\lambda}$$

We know that,

$$\frac{4.75}{6} = \left(\frac{\rho}{1-\rho}\right)$$

$$\left(\frac{1}{\rho} - 1\right) = \frac{6}{4.75}$$

$$\frac{1}{\rho} = 2.263$$

$$\rho = 0.442$$

$$\frac{\lambda}{\mu} = 0.442$$

$$\mu = \frac{10}{0.442} = 22.62 \text{ customer/hour}$$

29. (c)

In given matrix job 1 cannot be assigned to technician *A*.

M	6	4	3
4	2	7	0
5	3	6	4
7	4	5	4

Step: 1

Subtracting the smallest element in each row from every element of corresponding row.

M	3	1	0
4	2	7	0
2	0	3	1
3	0	1	0

Step: 2

Subtracting the smallest element of every column from corresponding element of each column.

M	3	0	0
2	2	6	0
0	0	2	1
1	0	0	0

© Copyright: MADE EASY www.madeeasy.in

Step: 3

Making allocation in opportunity cost matrix:

M	3	0	×
2	2	6	0
0	×	2	1
1	0	×	×

Allocation are,
$$A \rightarrow 3$$
, $B \rightarrow 4$, $C \rightarrow 1$, $D \rightarrow 2$

Minimum total cost = $(4 + 0 + 5 + 4) \times 100 = ₹ 1300$

30. (a)

Destination					
Origin	A	В	С	D	Capacity
Р	30 2	20 0	40 4	17 9	15/6/4/0
Q	60	28 0	35 19	52	19/0
R	26 9	13 17	50	22 0	26/09/0
Demand	11/2/0	17/0	23/4/0	09/0	

It is a balanced transportation problem.

Initial solution,
$$Z = 30 \times 2 + 40 \times 4 + 17 \times 9 + 35 \times 19 + 26 \times 9 + 13 \times 17$$

Initial solution, Z = ₹1493