

Delhi | Bhopal | Hyderabad | Jaipur | Lucknow | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

MACHINE TOOLS

MECHANICAL ENGINEERING

Date of Test: 18/07/2025

ANSWER KEY >

1.	(d)	7.	(b)	13.	(b)	19.	(b)	25.	(a)
2.	(a)	8.	(b)	14.	(b)	20.	(a)	26.	(a)
3.	(b)	9.	(c)	15.	(a)	21.	(c)	27.	(a)
4.	(d)	10.	(b)	16.	(b)	22.	(c)	28.	(c)
5.	(d)	11.	(a)	17.	(d)	23.	(c)	29.	(d)
6.	(c)	12.	(d)	18.	(c)	24.	(b)	30.	(a)

DETAILED EXPLANATIONS

Given,
$$Z = 10$$

 $N = 100 \text{ rpm}$
 $f = 50 \text{ mm/min}$

Feed per revolution,
$$f_N = \frac{50}{100} = 0.5 \text{ mm/rev.}$$

Feed per tooth,
$$f_Z = \frac{f_N}{Z} = \frac{0.5}{10} = 0.05 \text{ mm/tooth}$$

Cone height =
$$\frac{D/2}{\tan \frac{\alpha}{2}} = \frac{5}{\tan 60^{\circ}} = 2.886 \text{ mm}$$

cutting velocity,
$$(V) = \frac{\pi dN}{1000}$$

$$71.5 = \frac{\pi d \times 350}{1000}$$
diameter $(d) = 65.026$ mm

As MRR (metal removal rate) =
$$fdv$$

= $(0.6 \times 2.5 \times 150 \times 10^3) \text{ mm}^3/\text{min}$

=
$$225000 \text{ mm}^3/\text{min or } 22.5 \times 10^4 \text{ mm}^3/\text{min}$$

Time taken for cutting,

$$t = \frac{L}{V_c} = \frac{150 \times 60}{200} = 45 \text{ sec}$$

Axial feed,
$$F = \frac{3000 \text{ mm}}{30s} = 100 \text{ mm/s} = 6000 \text{ mm/min}$$

We know, Axial feed, $F = \pi dN \sin\theta$

$$6000 = \pi \times 200 \times 500 \times \sin\theta$$
$$\theta = 1.094^{\circ} \simeq 1.09^{\circ}$$

7. (b)

As taper is on full length,

So, Offset,
$$S = \frac{(D-d)L}{2l}$$

Where, $L = \text{full length of workpiece}, l = \text{portion of work piece}$
 $= \frac{(68-46)500}{2\times500} = 11 \text{ mm}$

8. (b)

Time/cut =
$$\frac{\text{Number of double strokes} \times \text{time}}{\text{double stroke}} = \frac{B}{f} \times \frac{1}{10} = \frac{300}{0.2} \times \frac{1}{10} = 150 \text{ min}$$

9. (c)

> Glazing is the phenomenon in which the grinding wheel becomes dull due to wearing out of sharp edges of grit on continuous machining.

10. (b)

$$V = \frac{NL(1+m)}{1000} = \frac{20 \times 300(1+\frac{3}{4})}{1000} = 10.5 \text{ m/min}$$

11.

Given : Depth (d) = 5 mm, f_m = 2 mm/s

Width of cut = Diameter of the tool

 $w = 40 \,\mathrm{mm}$

Material removal rate (MRR) = wdf_m

$$= 40 \times 5 \times 2 = 400 \text{ mm}^3/\text{s}$$

Power required =
$$\frac{\text{(Specific energy)} \times MRR}{\eta} = \frac{8.5 \times 400}{0.5} = 6.8 \text{ kW}$$

12. (d)

Machining time =
$$\frac{L}{f_t \times Z \times N}$$

Approach distance,
$$A = \sqrt{d(D-d)} = \sqrt{2(100-2)} = 14 \text{ mm}$$

$$L = 150 + 2 \times 14 = 178 \text{ mm}$$

$$T = \frac{178}{0.15 \times 8 \times 65} = 2.28 \text{ min} = 2.28 \times 60 = 136.92 \text{ sec}$$

13. (b)

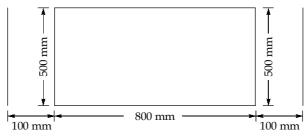
Total material removal rate,

MRR =
$$\frac{\pi}{4}D_1^2 f_m + \frac{\pi}{4}D_2^2 f_m = \frac{\pi}{4} f_m (D_1^2 + D_2^2)$$

$$\Rightarrow \frac{\pi}{4} \times \left(13^2 + 19^2\right) \times f_m = 24580$$

$$f_m = 59.049 \, \text{mm/min}$$

Compulsory approach for drill 1, $x_1 = \frac{D_1/2}{\tan \frac{\alpha}{2}} = \frac{13/2}{\tan 59^\circ} = 3.905 \text{ mm}$


Compulsory approach for drill 2, $x_2 = \frac{D_2/2}{\tan \frac{\alpha}{2}} = \frac{19/2}{\tan 59^\circ} = 5.708 \text{ mm}$

Time required to drill hole 1 = $\frac{L + x_1}{f_m} = \frac{40 + 3.905}{59.049} \times 60 = 44.612$ seconds

Time required to drill hole 2 =
$$\frac{L + x_2}{f_m} = \frac{40 + 5.708}{59.049} \times 60 = 46.44$$
 seconds = 46.44 seconds

As both the drills are working simultaneously, so the time for the complete operation is 46.44 seconds.

14. (b)

$$L = 100 + 800 + 100 = 1000 \text{ mm}$$

Cutting time per stroke =
$$\frac{1000 \text{ mm}}{6000 \text{ mm/min}} = \frac{1}{6} \text{min}$$

Return time =
$$\frac{1}{2}$$
 of cutter time = $\frac{1}{12}$ min per stroke

Total time per stroke =
$$\frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$
min

Number of stroke =
$$\frac{500}{2}$$
 = 250

$$\therefore \qquad \text{Total time } = \frac{1}{4} \times 250 = 62.5 \,\text{min}$$

15.

Length of uncut chip,
$$l = \frac{\pi}{2} (D_i + D_f)$$

Length of uncut chip,
$$l = \frac{\pi(75 + 73)}{2} = 232.48 \text{ mm}$$

$$\phi = 0.3328 \text{ radian} = 19.068^{\circ}$$

$$\tan 19.068^{\circ} = \frac{r \cos 15^{\circ}}{1 - r \sin 15^{\circ}}$$

$$r = \frac{l_c}{l}$$

$$0.3275 = \frac{l_c}{232.48}$$

$$l_c = 76.137 \text{ mm}$$

16. (b)

$$L = 1.5 \text{ m} = 1500 \text{ mm}$$

$$AL = OL = 20 \text{ mm}$$

$$L_{\text{total}} = 20 + 1500 + 20 = 1540 \text{ mm}$$

 $W = 5.5 + 600 + 5.5 = 611 \text{ mm}$

$$W = 5.5 \pm 600 \pm 5.5 = 611 \text{ mm}$$

Number of required stroke=
$$\frac{W}{f} = \frac{611 \,\text{mm}}{2 \,\text{mm/stroke}} = 305.5 \simeq 306$$

Planning time =
$$\frac{W}{f} \left[\frac{L_{\text{total}}}{V_{\text{forward}}} + \frac{L_{\text{total}}}{V_{\text{return}}} + T_{\text{reversing table}} \right]$$
$$= 306 \left[\frac{1540}{21 \times 1000} + \frac{1540}{42 \times 1000} + 0.02 \right]$$
$$= 39.78 \text{ min} \simeq 2386.8 \text{ sec}$$

17. (d)

$$V_c = \frac{\pi DN}{1000}$$

$$N = \frac{1000 \times 5}{\pi \times 50} = 31.83 \text{ rpm}$$

$$T_c = \frac{L_c}{fN} \times \text{Number of passes}$$

$$= \frac{150}{1 \times 31.83} \times 3 = 14.14 \text{ minutes}$$

$$V \times (5 \times 60)^{0.16} = 100 \times (45)^{0.16}$$

 $V = 73.82 \,\text{m/min}$
Spindle speed = $\frac{73.82 \times 1000}{\pi \times 25} = 939.90543 \,\text{rev/min}$

Cutting time per piece =
$$\frac{50 \times 60}{939.90543 \times 0.25}$$
 = 12.7672 sec

No. of components per tool change

$$=\frac{5\times60\times60}{12.7672}=1409.858=1410$$

19. (b)

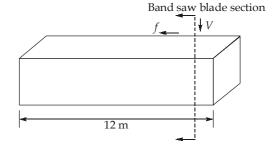
MRR =
$$\frac{\pi}{4}D^2 fN$$

 $D = 25 \text{ mm}$ $f = 0.25 \text{ mm/rev}$
 $V = \frac{\pi DN}{1000}$
 $30 = \frac{\pi \times 25 \times N}{1000}$
 $N = 381.972 \text{ rpm}$
MRR = $\frac{\pi}{4} \times 25^2 \times 0.25 \times 381.972 \text{ mm}^3 / \text{min}$
= $46874.9 \text{ mm}^3 / \text{min} = 0.78 \text{ cm}^3 / \text{sec}$

20. (a)

Saw has 12 teeth per meter

Saw speed =
$$150 \,\mathrm{m/min}$$


So, Number of teeth engaging per minute = $\frac{12}{\text{(metre)}} \times 150 \times \left(\frac{\text{metre}}{\text{min}}\right)$

Feed per tooth = 0.003 meter

Feed per minute = 1800×0.003

 $= 5.4 \,\mathrm{m/min}$

Time taken to cut 12 m = $\frac{12}{5.4}$ = 2.223 min

21. (c)

$$V = 70 \,\mathrm{m/min}$$

$$D = 50 \,\mathrm{mm}$$

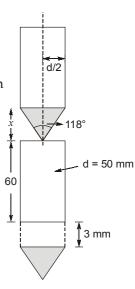
$$f = 0.25 \text{ mm/rev}$$

$$L = 60 \, \text{mm}$$

$$N = \frac{1000V}{\pi D} = \frac{1000 \times 70}{\pi \times 50} = 445.633 \text{ rev/min}$$

Breakthrough distance,

$$A = \frac{50}{2\tan 59^{\circ}}$$


$$A = 15.02 \text{ mm}$$

Total length of drill travel,

$$L = 60 + 15.02 + 3$$

$$L = 78.02 \, \text{mm}$$

Time for drilling the hole =
$$\frac{78.02}{0.25 \times 445.633}$$
 = 0.7 min

22. (c

Power required in turning is given by

$$P = K.d.f.V$$

$$V = \frac{\pi DN}{1000} = \frac{\pi \times 50 \times 140}{1000} = 21.99 \text{ m/min}$$

$$P = \frac{1600 \times 3 \times 1 \times 21.99}{60}$$

$$P = 1.76 \text{ kW}$$

23. (c)

As per given data,

length = 120 mm; initial diameter, D = 60 mm; cutting speed, V = 90 m/min

$$\pi DN_1 = 90$$

$$N_1 = \frac{90 \times 1000}{\pi \times 60}$$

$$N_1 = 477.464 \text{ rpm}$$

1st conversion (60 mm to 40 mm) machining Length, L_1 = 76 + 38 = 114 mm

$$D_1 = 40 \, \text{mm}$$

$$T_{m1} = \frac{L_1}{f \times N_1} = \frac{114}{0.8 \times 477.464} = 0.2984 \text{ min}$$

2nd conversion (40 mm to 20 mm) machining Length, L_2 = 38 mm, D_2 = 20 mm

Cutting speed,
$$V = 90 \,\text{m/min}$$

$$\pi D_1 N_2 = 90 \,\mathrm{m/min}$$

$$N_2 = \frac{90 \times 1000}{\pi \times 40}$$

$$N_2 = 716.197 \text{ rpm}$$

Machining time,
$$T_{m2} = \frac{L_2}{f \times N_2} = \frac{38}{0.8 \times 716.197} = 0.06632 \text{ min}$$

So total machining time =
$$T_{m1} + T_{m2}$$

$$= 0.2984 + 0.06632$$

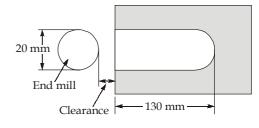
$$= 0.3647 \, \text{min}$$

24. (b)

Cutting speed,
$$v = \frac{\pi DN}{1000}$$

$$95 = \frac{\pi \times 20 \times N}{1000}$$

$$N = 1511.9719 \text{ rpm}$$


Feed per min = Feed per tooth \times No. of teeth \times rpm

 $= 0.15 \times 5 \times 1511.9719 = 1133.97897 \text{ mm/min}$

Approach distance
$$A_D = \frac{D}{2} = \frac{20}{2} = 10 \text{ mm}$$

$$L = 130 + 10 = 140 \text{ mm}$$

Cutting time =
$$\frac{140}{1133.97897}$$
 = 0.12345 min = 7.40 sec

25. (a)

$$t_1 = \frac{2f}{Nz} \sqrt{\frac{d}{D}}$$

$$t_2 = \frac{2f}{Nz} \sqrt{\frac{3d}{3D}}$$

$$\therefore \qquad \text{% change } t_2 - t_1 = 0$$

Given: $N_{\min} = 35 \text{ rpm}$ $N_{\max} = 300 \text{ rpm}$ n = 6 $Sped, \text{ ratio, } r = \frac{(n-1)\sqrt{N_{\max}}}{N_{\min}} = \sqrt[5]{\frac{300}{35}} = 1.537$

$$3^{\text{rd}}$$
 spindle speed, $N_3 = N_1 r^2$
= $35(1.537)^2 = 82.66 \text{ rpm}$

$$\pi DN = 18 \text{ m/min}$$

$$\pi D_{\min} \times N_{\max} = 18$$

$$N_{\max} = \frac{18}{\pi \times 6.25 \times 10^{-3}} = 916.732 \text{ rpm}$$

$$\pi D_{\max} \times N_{\min} = 18$$

$$N_{\min} = \frac{18}{\pi \times 25 \times 10^{-3}} = 229.183 \text{ rpm}$$

$$N_{\min} = N_1$$

$$N_{\max} = N_1 r^{8-1}$$

$$916.73 = 229.183 r^7$$

$$r = \sqrt[7]{\frac{916.73}{229.183}}$$

$$r = 1.219 \simeq 1.22$$

$$\frac{N_1}{N_2} = 1.22$$

28. (c)

$$\begin{aligned} \text{Given}: N_s &= 200 \text{ rpm}, D_s = 1 \text{ mm}, Z_s = 2, p_L = 4 \text{ mm} \\ N_S \times p_S \times Z_S &= N_L \times p_L \times Z_L \times 4 \\ 200 \times 1 \times 2 &= N_L \times 4 \\ N_L &= 100 \text{ rpm} \end{aligned}$$