

MADE EASY

Leading Institute for IES, GATE & PSUs

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Kolkata

Web: www.madeeasy.in | **E-mail:** info@madeeasy.in | **Ph:** 011-45124612

POWER ELECTRONICS

ELECTRICAL ENGINEERING

Date of Test: 14/07/2025

ANSWER KEY >

1.	(a)	7.	(c)	13.	(a)	19.	(a)	25.	(a)
2.	(d)	8.	(a)	14.	(c)	20.	(c)	26.	(b)
3.	(b)	9.	(c)	15.	(d)	21.	(b)	27.	(b)
4.	(d)	10.	(d)	16.	(a)	22.	(b)	28.	(c)
5.	(b)	11.	(d)	17.	(a)	23.	(b)	29.	(b)
6.	(d)	12.	(a)	18.	(d)	24.	(a)	30.	(d)

DETAILED EXPLANATIONS

1. (a)

When zero of the triangular wave coincides with zero of the reference sinusoid, there are (m-1) pulses per half cycle.

i.e.,
$$\left(\frac{f_c}{2f} - 1\right)$$
 pulses per half cycle

or (m-1) puses per half cycle.

2. (d)

Let, V_1 = Output of buck converter = Input of boost converter

$$V_1 = 10 D_1$$

Output of boost converter = 30 V = $\frac{V_1}{1 - D_2}$

$$30 = \frac{10D_1}{1 - D_2}$$

or
$$3-3 D_2 = D_1$$

or $D_1 + 3 D_2 = 3$

3. (b)

The waveform of voltage across diode,

$$V_m = V_{\text{rms}} \sqrt{2}$$

 $V_m = 280 \times \sqrt{2} = 395.97 \text{ V}$

Peak value of waveform shown above is

$$2 V_m = 2 \times 395.97$$

 $2 V_m = 791.94 V$

The rms value of the wave form shown above is,

$$V_{D1, \text{ rms}} = \left(\frac{\text{peak value}}{\sqrt{2}}\right) \times \sqrt{\frac{\pi}{2\pi}}$$
$$= \frac{791.94}{\sqrt{2} \times \sqrt{2}} = 395.97 \text{ V}$$

4. (d)

For 1-\phi semiconverter,

Supply rms current,
$$I_{\text{rms}} = I_{dc} \left[\frac{\pi - \alpha}{\pi} \right]^{1/2} = I_{dc} \left[\frac{\pi - \pi / 4}{\pi} \right]^{1/2} = 0.866 I_{dc}$$

The rms value of the supply fundamental component of input current

$$I_{\text{rms, 1}} = \frac{2\sqrt{2}}{\pi} I_{dc} \cos\left(\frac{\alpha}{2}\right)$$
$$= \frac{2\sqrt{2}}{\pi} I_{dc} \cos\left(\frac{\pi}{4 \times 2}\right) = 0.83178 I_{dc}$$

Harmonic factor (Hf) = $\left[\left(\frac{I_{\text{rms}}}{I_{\text{rms},1}} \right)^2 - 1 \right]^{1/2} = \left[\left(\frac{0.866 I_{dc}}{0.83178 I_{dc}} \right)^2 - 1 \right]^{1/2} = 28.98\%$

5. (b)

For Buck-converter

Average output voltage =
$$DV_s$$

Where,

$$D = \text{Duty ratio},$$
 $V_s = \text{input voltage}$
 $V_s = 40 \text{ V},$ $V_0 = 16 \text{ V}$
 $V_0 = 16 \text{ V}$
 $V_0 = 16 \text{ V}$
 $V_0 = 16 \text{ V}$

$$D = \frac{16}{40} = 0.4$$

Peak to peak ripple current,

$$\Delta I_L = \frac{V_s D(1-D)}{L f}$$

$$0.8 = \frac{40 \times 0.4 \times 0.6}{L \times 20 \times 10^3}$$

$$L = 600 \,\mu\text{H}$$

6. (d)

- (a) Voltage drop in BJT is less as compare to MOSFET is correct statement.
- $(d) \ \ In \ MOSFET \ channel \ length \ is \ relatively \ small \ compare \ to \ channel \ width.$

Other two statements are correct.

7. (c)

Due to absence of minority carrier reverse recover time of schottky diode is in nanosecond. It is used in SMPS.

8. (a)

For 1-\phi full bridge inverter

$$V_{dc} = 60 \text{ V},$$
 $R = 12 \Omega$
 $V_{01 \text{ rms}} = \frac{2\sqrt{2} V_{dc}}{\pi} = \frac{2\sqrt{2}}{\pi} \times 60 = 54.046 \text{ V}$
Power = $\frac{V_{01 \text{ rms}}^2}{R} = \frac{(54.046)^2}{12} = 243.41 \text{ W}$

9. (c)

For 1-phase full-wave diode rectifier, rms value of output current

$$I_{0 \text{ rms}} = \frac{V_m}{\sqrt{2}R} = 120\sqrt{2}$$

$$\Rightarrow V_m = 120 \times 2 \times R$$

$$= 240 R$$

The charge is delivered by direct current

$$I_{dc} = \frac{2V_m}{\pi R} = \frac{2 \times 240R}{\pi R} = \frac{480}{\pi} A$$

Also, $I_{dc} \times \text{time in hours} = 500 \text{ Ah}$

∴ Time required to deliver this charge

$$=\frac{500 \times \pi}{480}$$
 hrs = 3.27 hrs

10. (d)

Average output voltage,

$$V_0 = \frac{V_m}{\pi} (1 + \cos \alpha)$$

$$= \frac{230\sqrt{2}}{\pi} [1 + \cos 30^\circ] = 193.20 \text{ V}$$

$$I_0 = \frac{V_0}{R} = \frac{193.20}{10} = 19.32 \text{ A}$$
Reactive power = $V_0 I_0 \tan\left(\frac{\alpha}{2}\right) = 1 \text{ KVAR}$

11. (d)

$$V_{03} = \frac{4 V_s}{3\pi} \sin 3(\omega t) = \frac{4 \times 230}{3 \times \pi} \sin 3(\omega t)$$

$$= 97.6150 \sin (942.47t)$$

$$Z_3 = R + j \left(3\omega L - \frac{1}{3\omega C}\right)$$

$$= 4 + j \left(3 \times 2\pi \times 50 \times 35 \times 10^{-3} - \frac{1}{3 \times 2\pi \times 50 \times 155 \times 10^{-6}}\right)$$

$$= 4 + j(32.986 - 6.8453) \Omega$$

$$|Z_3| = \sqrt{4^2 + (26.1407)^2} \Omega$$

$$|Z_3| = 26.44 \Omega$$

$$I_0 = \frac{97.6150}{\sqrt{2}} \times \frac{1}{26.44} = 2.61 \text{ A}$$

12. (a)

$$V_r = 4 \text{ V}$$

$$V_c = 6 \text{ V}$$
Total pulse width = $2d$

$$\frac{2d}{N} = \left(1 - \frac{V_r}{V_c}\right) \frac{\pi}{N}$$
(Where N is number of pulses per half cycle)
$$2d = \left(1 - \frac{V_r}{V_C}\right) \pi$$

$$2d = \left(1 - \frac{4}{6}\right) 180^\circ = 60^\circ$$

13. (a)

Average voltage with internal inductance (L_s)

$$V_{0 \text{ avg}} = \frac{3V_{mL}}{\pi} \cos \alpha - \frac{3\omega L_s I_0}{\pi} \qquad ...(i)$$

$$V_{0 \text{ avg}} = \frac{3V_{mL}}{\pi} \cos(\alpha + \mu) + \frac{3\omega L_s I_0}{\pi} \qquad ...(ii)$$

$$V_{mL} \rightarrow \text{maximum line voltage}$$

Where,

www.madeeasy.in

 $\alpha \rightarrow$ firing angle

 $\mu \rightarrow \text{overlap angle}$

 $L_s \rightarrow \text{internal inductance}$

 $I_0 \rightarrow \text{load current}$

Subtract equation (i) from (ii),

$$\frac{3V_{mL}}{\pi}[\cos\alpha - \cos(\alpha + \mu)] = \frac{6\omega L_s I_0}{\pi}$$

$$\frac{3 \times 400 \times \sqrt{2}}{3.14} [\cos 36.86^{\circ} - \cos (36.86^{\circ} + \mu)] = \frac{6 \times 2\pi \times 50 \times 3.2 \times 10^{-3} \times 20}{3.14}$$

$$\cos 36.86^{\circ} - 0.07105 = \cos(36.86^{\circ} + \mu)$$

 $36.86^{\circ} + \mu = \cos^{-1} 0.729$
 $\mu = 43.192^{\circ} - 36.86^{\circ}$
 $= 6.33^{\circ}$

Fundamental power factor = $\cos\left(\alpha + \frac{\mu}{2}\right) = \cos\left(36.86^{\circ} + \frac{6.33^{\circ}}{2}\right) = 0.7657$

14. (c)

At rated condition,

$$P = 2.7 \text{ kW} = 2700 \text{ W}$$

 $V = 180 \text{ V}$

$$I_{\text{rated}} = \frac{2700}{180} = 15 \text{ A}$$

back emf =
$$E_b$$
 = 180 – 15 × 0.5 = 172.5 V

Now, at duty ratio of 0.6

$$V = 200 \times 0.6 = 120 \text{ V}$$

and at 70% of rated torque

armature current =
$$0.7 \times 15 = 10.5 \text{ A}$$

back emf
$$(E_b')$$
 = 120 – 10.5 × 0.5
= 114.75 V

We know,

$$\frac{E_b}{E_b'} = \frac{N_{\text{rated}}}{N}$$

$$\frac{172.5}{114.75} = \frac{1200}{N}$$

$$N = 798.26 \text{ rpm}$$

15. (d)

$$I_{L \text{ avg}} = \frac{I_{\text{max}} + I_{\text{min}}}{2} = \frac{25 + 15}{2} A = 20 A$$

$$I_{L \text{ avg}} = \frac{I_0}{1 - D}$$

Where, I_0 = output current, D = duty ratio

$$T_{\rm ON} = 15 \; \mu {\rm sec},$$
 $T_{\rm OFF} = 10 \; \mu {\rm sec}$
$$D = \frac{T_{\rm ON}}{T_{\rm ON} + T_{\rm OFF}} = \frac{15}{15 + 10} = \frac{15}{25} = \frac{3}{5} = 0.6$$

$$f = \frac{1}{T} = \frac{1}{T_{\rm ON} + T_{\rm OFF}} = \frac{1}{25} \times 10^6 = 40 \; {\rm kHz}$$

$$I_{\rm L \; avg} = \frac{I_0}{1 - D}$$

$$I_0 = 20 \times \left(1 - \frac{15}{25}\right) = 8 \; {\rm A}$$

For boost converter, $\Delta V_0 = \Delta V_C = \frac{DI_0}{fC} = \frac{0.6 \times 8}{40 \times 10^3 \times 150 \times 10^{-6}} = 0.8 \text{ V}$

16.

For 3-\$\phi\$ half controlled instantaneous source current,

$$I_{s} = \frac{4I_{0}}{n\pi} \sin\left(\frac{n\pi}{3}\right) \cos\left(\frac{n\alpha}{2}\right) \sin(n\omega t - n\alpha)$$

$$(I_{s1})_{rms} = \frac{2\sqrt{2}I_{0}}{\pi} \cdot \frac{\sqrt{3}}{2} \cdot \cos\left(\frac{\alpha}{2}\right)$$

$$= \frac{\sqrt{6}}{\pi}I_{0}\cos\left(\frac{\alpha}{2}\right)$$
Also,
$$(I_{s})_{rms} = I_{0}\sqrt{\frac{2}{3}}, \qquad \text{When } \alpha < 60^{\circ}$$

$$= I_{0}\sqrt{\frac{\pi - \alpha}{\pi}}, \qquad \text{When } \alpha > 60^{\circ}$$

(DF) = $\frac{(I_{s1})_{rms}}{(I_s)_{rms}} = \frac{\sqrt{6}}{\pi} \cdot \frac{I_0 \cos\left(\frac{\alpha}{2}\right)}{I_0 \cdot \sqrt{2}}$ Distortion factor,

$$= \frac{3}{\pi} \cdot \cos\left(\frac{\alpha}{2}\right)$$
Power factor = $(DF) \cdot \cos\left(\frac{\alpha}{2}\right)$

$$= \frac{3}{\pi} \cos^2\left(\frac{\alpha}{2}\right) = \frac{3}{\pi} \cos^2\left(\frac{35}{2}\right)$$
= 0.869

www.madeeasy.in © Copyright: MADE EASY

17. (a)

It is also unidirectional and bipolar

Anode

Cathode

18. (d)

This is buck converter circuit

The critical value of inductor L_C is,

$$L_C = \frac{(1-\alpha)R}{2f}$$

$$\alpha = \frac{V_0}{V_s} = \frac{5}{12} = 0.4166$$

$$L_C = \frac{(1-0.4166)500}{2 \times 25 \times 10^3} = 5.83 \text{ mH}$$

Where,

Critical value of capacitance,

$$C_c = \frac{1 - \alpha}{16 L_c f^2} = \frac{1 - 0.4166}{16 \times 5.83 \times 10^{-3} \times (25 \times 10^3)^2} = 10 \text{ nF}$$

19. (a)

From $0 < \omega t < \pi$ the load current tends to peak value.

At t_1 peak value of output current is I_p .

$$t_1 = \frac{\pi}{\omega} = \frac{\pi}{2\pi \times 50} = \frac{1}{100}s$$

At
$$t = 0$$
,

$$i_{0} = -I_{p}$$

$$V_{0} = L \frac{di}{dt}$$

$$400 = 0.5 \left(\frac{I_{p} - (-I_{p})}{t_{1} - 0} \right)$$

$$400 = 0.5 \times \frac{2I_{p}}{t_{1}}$$

$$\frac{400}{0.5 \times 2} \times \frac{1}{100} = I_{p} = 4 \text{ A}$$

20. (c)

The circuit is a oscillatory circuit,

$$i(t) = V_s \sqrt{\frac{L}{C}} \sin \omega t$$

$$i(t) = 250\sqrt{\frac{100}{25}}\sin\omega t$$

$$\omega = \frac{1}{\sqrt{LC}}$$

$$i(t) = 500 \sin \omega t A$$

For maximum value of current

$$\sin \omega t = 1$$

$$\omega t = \frac{\pi}{2}$$

$$t = \frac{\pi}{2\omega} = \frac{\pi}{2 \times \frac{1}{\sqrt{LC}}} = \frac{\pi \sqrt{LC}}{2} = \frac{\pi \sqrt{25 \times 10^{-6} \times 100 \times 10^{-6}}}{2}$$

$$t = 78.5 \, \mu s$$

$$V_c = \frac{1}{C} \int_{0}^{157 \mu \text{sec}} 500 \sin \omega t \, dt - 250$$

$$= \frac{500}{\omega C} \left(-\cos \omega t \Big|_{0}^{157 \,\mu s} \right) - 250$$
$$= -250 \, (1 - 1) - 250$$
$$V_{C} = -250 \, \text{V}$$

21.

During the on period of T_1 and T_2 the circuit behaves as

$$V_C = \frac{1}{C} \int_0^{t_{\text{on}}} i dt$$

$$V_C = \frac{30}{20 \times 10^{-6}} T_{on}$$

Where

$$T_{\rm on} = \frac{1}{2f} = \frac{1}{2 \times 500} = 1 \times 10^{-3} \,\mathrm{s}$$

$$V_C = \frac{30}{20 \times 10^{-6}} \times 1 \times 10^{-3} = 1500 \text{ V}$$

Peak to peak of output voltage is 1500 V.

The reverse voltage that appears across thyristor is 750 V.

22. (b)

The line current of a 3-phase fully controlled converter is,

$$i_{sn} = \sum_{n=1,3,5...}^{\infty} \frac{4I_0}{n\pi} \sin \frac{n\pi}{3} \sin(n\omega t - n\alpha)$$

Rms value of 5th harmonic current,

$$I_{s5} = \frac{4I_0}{\sqrt{2} \times 5\pi} \sin\left(\frac{5\pi}{3}\right) = -0.15593 I_0$$

and,

$$I_{s1} = \frac{4I_0}{\sqrt{2}\pi} \sin\left(\frac{\pi}{3}\right) = 0.7796 I_0$$

Percentage of 5th harmonic to fundamental

$$= \frac{I_{s5}}{I_{s1}} \times 100 = \frac{-0.15593}{0.7796} \times 100 = -20\%$$

23. (b)

The given chopper is Buck-Boost

$$V_0 = \frac{V_S \times D}{1 - D}$$

$$V_0 = \frac{150 \times 0.4}{1 - 0.4} = \frac{150 \times 4}{6} = 100 \text{ V}$$

but in question they asked opposite to the actual polarity

$$V_0 = -100 \; \mathrm{V}$$

24. (a)

$$V_L + V_C = 0$$

$$L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt = 0$$

Applying Laplace transform

$$LsI(s) - LI(0^{+}) + \frac{1}{Cs}I(s) = 0$$

$$I(s) \left[Ls + \frac{1}{Cs} \right] = LI(0^{+})$$

$$I(s) = \frac{LCsI(0^{+})}{LCs^{2} + 1}$$

$$I(s) = \frac{LCI(0^{+}) \cdot s}{LC\left(s^{2} + \frac{1}{LC}\right)}$$

$$I(s) = I(0^{+}) \cdot \frac{s}{s^{2} + \left(\frac{1}{\sqrt{LC}}\right)^{2}}$$

Applying inverse Laplace transform

$$i(t) = I(0^{+})\cos\frac{1}{\sqrt{LC}}t = I(0^{+})\cos\omega t$$
$$\omega = \frac{1}{\sqrt{LC}}$$

After $t = \frac{\pi}{2}$ currents gets reverse i.e. negative current diode will not allow, so conduction angle

$$=\frac{\pi}{2}$$

$$\omega t = \frac{\pi}{2}$$

$$t = \frac{\pi}{2\omega} = \frac{\pi}{2 \times \frac{1}{\sqrt{LC}}} = \frac{\pi\sqrt{LC}}{2} = 38.47 \text{ } \mu\text{s}$$

25. (a)

% THD =
$$\frac{\sqrt{V_{0,rms}^2 - V_1^2}}{V_1} \times 100$$

Rms value of output voltage = $V_s \sqrt{\frac{2d}{\pi}}$

Pulse width, $2d = 150^{\circ}$ (given)

$$d = 75^{\circ}$$

$$V_{0, \text{ rms}} = V_s \sqrt{\frac{2 \times 75}{180}} = 0.9128 V_s$$

$$V_{01, \text{ rms}} = \frac{4V_s}{\sqrt{2}\pi} \sin \frac{\pi}{2} \sin 75^\circ = 0.8696 \ V_s$$

$$\% \text{ THD} = \frac{\sqrt{(0.9128V_s)^2 - (0.8696V_s)^2}}{0.8696V_s} \times 100 = 31.92\%$$

26. (b)

Maximum value of line voltage,

$$V_{ml} = \sqrt{2}V_l = 230\sqrt{2} \text{ V}$$

Average output voltage,

$$V_0 = \frac{3V_{ml}}{\pi} = 310.60 \text{ V}$$

$$V_0 = E + I_0 R$$

$$\frac{V_0 - E}{R} = I_0 = \frac{310.60 - 240}{8} = 8.82 \text{ A}$$

As current is ripple free,

$$I_{0r} = I_0 = 8.82 \text{ A}$$

RMS value of fundamental component of source current,

$$I_{s\,1} = \frac{2\sqrt{3}}{\pi} \times \frac{I_0}{\sqrt{2}}$$

RMS value of source current

$$I_s = \left[\frac{I_0^2 \times 2\pi}{\pi \times 3} \right]^{1/2} = \sqrt{\frac{2}{3}} I_0$$

Current distortion factor,

$$CDF = \frac{I_{s1}}{I_s} = \frac{2\sqrt{3}I_0}{\sqrt{2}\pi} \times \frac{\sqrt{3}}{\sqrt{2}I_0} = \frac{3}{\pi} = 0.955$$

27. (b)

Due to source inductance,

Average reduction in output voltage,

$$\Delta V_{d0} = 4 f L_s I_0$$
= 4 × 50 × (12 × 10⁻³) × 16 = 38.4 V
$$\Delta V_{d0} = \frac{V_m}{\pi} [\cos \alpha - \cos(\alpha + \mu)]$$

As $\alpha = 0^{\circ}$ for diodes

$$38.4 = \frac{V_m}{\pi} [1 - \cos \mu]$$

$$38.4 = \frac{230\sqrt{2}}{\pi} [1 - \cos \mu]$$

$$\cos \mu = 1 - 0.37$$

$$\mu = \cos^{-1} 0.63$$

$$\mu = 50.95^{\circ}$$

:. Conduction angle of diode

$$= 180^{\circ} + 50.95^{\circ}$$

 $= 230.95^{\circ}$

28.

Output voltage of Buck boost converter,

$$V_0 = \frac{-D}{1-D}V_S = \frac{-0.3 \times 28}{1-0.3}$$
$$= \frac{-0.3}{0.7} \times 28 = -12 \text{ V}$$

Average current through inductor,

$$I_L = \frac{V_S D}{R(1-D)^2} = \frac{28 \times 0.3}{5(0.7)^2} = 3.42 \text{ A}$$

29. (b)

$$m_i$$
 = modulation index < 1
 $V_{01 \text{ (peak)}} = \frac{m_i V_{dc}}{2} = \frac{0.8 \times 200}{2} = 80 \text{ V}$
 $I_{01 \text{ (peak)}} = \frac{V_{01 \text{peak}}}{\sqrt{R^2 + (\omega L)^2}} = \frac{80}{\sqrt{8^2 + (12)^2}}$
 $= \frac{80}{14.422} = 5.547 \approx 5.55 \text{ A}$

30.

 $E_{\text{total}} = E_{t1} + E_{t2}$ Total energy loss,

$$E_{t1} = \int_{0}^{t_1} Vi \cdot dt$$

As voltage across the switch is constant ie. 500 V

=
$$500 \int_{0}^{t_1} i \cdot dt = 500 \times \frac{1}{2} \times (0.4 \times 10^{-6}) \times 40 = 4 \text{ mJ}$$

Similarly

$$E_{t2} = \int_{0}^{t_2} Vi \cdot dt$$

As switch current is constant ie. 30 A

$$E_{t2} = 30 \int_{0}^{t_2} V \cdot dt = 30 \times \frac{1}{2} \times (0.4 \times 10^{-6}) \times 500 = 3 \text{ mJ}$$

: total energy loss in process

$$= 4 \text{ mJ} + 3 \text{ mJ} = 7 \text{ mJ}$$