
1. (c)

2. (d)

3. (b)

4. (b)

5. (c)

6. (d)

7. (a)

8. (c)

9. (a)

10. (d)

11. (b)

12 (c)

13. (c)

14. (d)

15. (d)

16. (b)

17 (d)

18. (c)

19. (a)

20. (a)

21. (a)

22. (d)

23. (c)

24. (d)

25. (c)

26. (c)

27. (d)

28. (b)

29. (d)

30. (d)

ANSWER KEY

COMPLIER DESIGN

COMPUTER SCIENCE & IT
Date of Test : 11/07/2025

Delhi | Bhopal | Hyderabad | Jaipur | Pune | Bhubaneswar | Kolkata

Web: www.madeeasy.in | E-mail: info@madeeasy.in | Ph: 011-45124612

CLASS TEST S.No.:01_JP_CS_11072025

© Copyright :www.madeeasy.in

8 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

DE TAILED EXPL ANATIONS

1. (c)
Simple two-pass assembler:
1. Allocates space for the literals.
2. Computers the total length of program (syntax analysis).
3. Builds the symbol table for the symbols and their values.

2. (d)
Relation between LL(1), SLR(1) and CLR(1) and LALR(1) given below:

LL(1)

CLR(1)

LALR(1)

SLR(1)

S1 is false, S2 is true and S3 is false.

3. (b)
In both stack and heap allocation, memory allocated at runtime.
Static allocation does not support recursion. However, in stack allocation, storage is organized as
a stack and activation records are pushed and popped as activation begin and end respectively.

4. (b)
• A token is a pair consisting of a token name and an optional attribute value. The token name

is an abstract symbol representing a kind of lexical unit e.g. a particular keyword or a sequence
of input characters denoting an identifier.

• A pattern is a description of the form that the lexemes of a token may take. In the case of a
keyword as a token, the pattern is just the sequence of characters that form the keyword.

• A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

5. (c)
G1 : Let ‘w’ be ‘aca’

S S

a SS a

c c

a aS S

Since two parse trees are possible for a string, hence the Grammar is ambiguous.
G2 : Let ‘w’ be ‘xxx’

© Copyright : www.madeeasy.in

9• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

S S

X XYx x

Y Y

x x

x

x

Y

Since two parse trees are possible for a string, hence the Grammar is ambiguous.
So both grammars are ambiguous.

6. (d)
FIRST {B} = {b, ∈}

FOLLOW {B} = (FIRST (C) – {∈}) ∪ FOLLOW (A) ∪ FIRST (b)
= {c} ∪ {$} ∪ {b}
= {b,c, $}

7. (a)

1 1 0 1 1 0 1 1

3

6

3

2 2–1 1

8. (c)
x is inherited.
y is synthesized.

9. (a)
a * a + a

E E +

a a

* E E

a a

E EE+

E

a

E *

E

a

Since, two parse trees are possible.
Hence, grammar is ambiguous.

10. (d)
Left recursion is there in the production Rule 2 and 3.
Rule 2 :

A → Abab
After removing left recursion :

A → bA′
A′ → baA′∈

© Copyright :www.madeeasy.in

10 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

Rule 3 :
B → BaAa

After removing left recursion :
B → aB′
B′ → aAB′∈

Hence, the grammar after resolving left recursion is,
S → ABBA
A → bA′
A′ → baA′∈
B → aB′
B′ → aAB′∈

11. (b)

S S′ → ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

S S#cS
S SS
S S@
S <S>
S a
S b
S c

S < S→ ⋅
S S#cS
S SS
S S@
S <S>
S a
S b
S c

→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅
→ ⋅

<

Total 8 items present

<

12 (c)
Stack contains only a set of viable prefixes.

13. (c)
Follow (S) = First (L′)

First (L′) = {∗, ∈}
Since, First (L′) contain ∈, hence

Follow (S) = {First (L′) – ∈} ∪ follow (L)
Follow (L) = {), {follow (S)}}
Follow (S) = $
Follow (L) = {), $}
Follow (S) = {∗,), $}

Hence, there are three elements in the follow set of Non-terminal S.

14. (d)

main ()

{

int a, b; // initialize integer a, b

a = 10;

b = 15;

Printf("a = %d, b = %d", a++ , b––);

}

int

Total 30 tokens are available in the above C program.

© Copyright : www.madeeasy.in

11• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

15. (d)
3 – 2 * 4 $ 2 $ 3

= (((3 – 2) * 4) $ 2) $ 3
= ((1 * 4) $ 2) $ 3
= (4 $ 2) $ 3
= 163 = 4096

16. (b)
Checkit out using following code.
MOV a, R1
opr b, R1 t1 = a + b
MOV d, R2
opr c, R2 t2 = c + d
opr e, R2 t3 = e – t2
MOV t3, R1
opr t1, R1 t4 = t1 – t3
Minimum number of MOV instructions required = 3.

17 (d)
IN = USE ∪ {OUT – DEF}

OUT = ∪ IN (successor)

B1

B2

B3

B4

Block

{ , }

{ , }

{ }

m n

j

a

i

φ

USE

{ , , }

{ , }

a j

ji

i

i

{ }

{ }

a

DEF

{ , }

{ , }

{ }

m n

j

a

i

φ

IN

{ , }ji

i

{ }

{ }

{ , }

a

a

j

OUT

{ , }m n

φ

{ , , }

{ , }

a j

a j

i

IN

{ , , }

{ , }

{ , }

{ , , }

a j

a j

a j

a j

i

i

OUT

{ , }m n

{ , , }

{ }

{ , }

a j

j

a j

i

IN

{ , , }

{ , }

{ , }

{ , , }

a j

a j

a j

a j

i

i

OUT

FIRST GO SECOND GO THIRD GO

∴ The variables that are live at exit (i.e. live out) of each basic block are
B1 = {a, i, j}, B2 = {a, j}
B3 = {a, j}, B4 = {a, i, j}

18. (c)

S

A a b

B a b{ , , }∈

{ , , }a b ∈

{ , , }∈

{ , , $}a b

{ , }

{ , , $}

a b

a b

FIRST FOLLOW

LL(1) Parsing table:

S S aAbB
S

A A S

B B S

→
→ ∈

→

→

S bAbB
S

A S

B S

→
→ ∈

→

→

S

B S

→ ∈

→

a b $

There are only 2 entries in which there are multiple productions.

© Copyright :www.madeeasy.in

12 Computer Science & ITComputer Science & ITComputer Science & ITComputer Science & ITComputer Science & IT

19. (a)
• Statement I and IV is correct.
• Type checking is done at semantic analysis phase.
• Target code generation is dependent based on the machine.
• Symbol table is accessed during lexical, syntax and semantic analysis phase.

20. (a)

S aS .
S b→ .

→

S b→ . S aS→ .

S aS
S b

→
→

 .
 .

S a.S→

a

b Sb

a S aS b→ 

Some possible stack contents are
aaS, ab, b, etc.

21. (a)
Given SDT is S-attributed and hence L-attributed too. Since all translations are appended at end
and attributes are synthesis, hence both L-attributed and S-attributed approach evaluates to same
value.

S {S.val = 17}

S P+

P P ∗ Q

Q Q num

2 3

num num 5

{S.val = 2}

{P.val = 2} {P.val = 3}

{Q.val = 2} {Q.val = 3}

{P.val = 15}

{Q.val = 5}

22. (d)

+

P

/

+

X Y

Z

Total 8 edges

© Copyright : www.madeeasy.in

13• Compiler DesignCompiler DesignCompiler DesignCompiler DesignCompiler DesignCS

23. (c)
t1 = a * b
t2 = –t1
t3 = c + d
t4 = –(a * b) + (c + d)
t1 = a + b
t2 = t1 + t3
t5 = –(a * b) + (c + d) – (a + b + c + d)

24. (d)
• Statement S1 and S2 are correct.
• Statement S3 is incorrect. Heap and stack both are present in main memory.

25. (c)

S S′ → .
S Aa

bAC
dC
bda

A d

 →

 →

 .
.
.
.

 .
S b AC → .

b da
A d

.
 . →

S bd a → .
A d → .

S d C → .
d.

S A a → .

S dC → .

S S → .′

S Aa → .

S bA C → .
b

d

d

A

S

S bda → .

Given grammar is not SLR (1), but LAR (1).

26. (c)
Static scoping means that x refers to the x declared innermost scope of declaration. Since ‘h’ is
declared inside the global scope, the innermost x is the one in the global scope (it has no access to
the x’s in ‘f ’ and ‘g’, since it was not declared inside them), so the program prints 23 twice.
Dynamic scoping means that x refers to the x declared in the most recent frame of the call stack.
‘h’ will use the x from either ‘f ’ or ‘g’, whichever one that called it so the program would print 22
and 45.

