- C	LASS	5 ТЄ	ST –			S.No	. : 01 S	K_CS_BCDF	310325
NE MADE EASY									
		Le	n R ading I	DE	for IE	E A S S, GATE &		6	
		D	elhi Bho	pal Hydera	ıbad Ja	aipur Pune	Kolkata		
		Web: www	.madeeasy.	in E-mail	: info@m	adeeasy.in	Ph: 011-4	15124612	
	CO	MP	UTE	ER C	R	GAN	ZA		Ν
		C	ЭМР	UTER	SC	IENCE	& I	т	
	_		Da	ate of Te	st : 31,	/03/2025			
	SW/ED K	YEV 💊							
	SVVLN N								
1.	(d)	7.	(b)	13.	(a)	19.	(a)	25.	(d)
2.	(c)	8.	(c)	14.	(c)	20.	(a)	26.	(b)
3.	(c)	9.	(b)	15.	(b)	21.	(b)	27.	(c)
4	(a)	10	(h)	16	(d)	2 2	(b)	28	(c)
т .	(4)	10.	(5)	10.	(4)	<i>LL</i> .	(5)	20.	
5.	(a)	11.	(b)	17.	(b)	23.	(c)	29.	(a)
6.	(c)	12.	(d)	18.	(a)	24.	(b)	30.	(d)

DETAILED EXPLANATIONS

1. (d)

Since, it uses horizontal micro-programmed that requires 1 bit control / signal. For 125 control signal, we need 125 bits. Total number of micro-operation instruction = $215 \times 6 = 1290$ It requires 11 bit.

2. (c)

Stack		Accumulator			Register	-Memory	Load-store		
Push (A)	8 + 64	Load A	8 + 64		Load R ₁ , A	8 + 6 + 64	Load R ₁ , A	8 + 6 + 64	
Push (B)	8 + 64	Add B	8 + 64		Add R ₃ , R ₁ , B	8 + 6 + 6 + 64	Load R ₂ , B	8 + 6 + 64	
Add	8	Store C	8 + 64		Store R ₃ , C	8 + 6 + 64	Add R ₃ , R ₁ , R ₂	8+6+6+6	
Pop (C)	8 + 64						Store R ₃ , C	8 + 6 + 64	
= 224 bits		=	216 bits	-		= 240 bits		= 260 bits	

Total size = 224 + 216 + 240 + 260 = 940 bits

- 3. (c)
 - In pipelined CPU, there will be buffer delays. So, for single instruction non-pipelined CPU takes less time compared to pipelined CPU.
 - Structural dependencies cause hazards during pipelining.

4. (a)

:. Memory address space: 15×2^{28} I/O address space = 1×2^{28}

5. (a)

A vectored interrupt is the one, where CPU actually knows the address of the ISR in advance, with the help of an interrupt vector, the interrupting device supplies the branch information to the processor.

6. (c)

Rate of transfer to or from any one disk = 30 MBps.

Maximum memory transfer rate = $\frac{4 \text{ B}}{10 \times 10^{-9}} = 400 \times 10^{6} \text{Bps} = 400 \text{ MBps}$

Since rate of data transfer = 30 MBps

Here number of disk transfer = $\left[\frac{400}{30}\right] = 13$

Therefore, 13 disks can simultaneously transfer data to or from the main memory.

Computer Organization CS 9

7. (b)

DMA transfer character at rate of 19200 bpsec

8 bit = 1 character So. 192000 b = 2400 character So. 1 sec = 2400 character 1 character = $\frac{1}{2400}$ = 416.7 × 10⁻⁶ sec Processor fetch rate is 2 MIPS 1 MIPS = 1 sec1 Instruction = $\frac{1}{2 \times 10^6} = 0.5$ micro-sec % slow down using DMA = $\frac{0.5 \times 10^{-6}}{416.7 \times 10^{-6}} \times 100$ $=\frac{0.5}{416.7}=0.11\%$

8. (c)

CPI = CPI_{execution} + Memory stall per instruction ...(1) Memory stall per instruction = Memory access / Instruction * Miss rate * Miss penalty ...(2) Memory access / Instruction = Instruction fetch + Load / store = 1 + 0.3 = 1.3 ...(3) from (2) and (3) Memory stall / Instruction = $1.3 \times 0.15 \times 5 = 0.975$

...(4)

from (1) and (4)

$$CPI = 1.1 + 0.975 = 2.075$$

The ideal memory CPU with no misses = $\frac{2.075}{1 \text{ 1}}$ = 1.88 time faster

9. (b)

Memory mapped I/O uses the same address bus to address both memory and I/O devices the memory and registers of the I/O devices are mapped to address values.

So, when an address is accessed by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of I/O device.

10. (b)

11. (b)

Number of cache lines = $\frac{64 \, kB}{64 \, B}$ = 1 k = 2¹⁰

Number of sets =
$$\frac{2^{10}}{2^2}$$
 =

$$\begin{array}{c|ccccc} Tag & Set & Block \\ \hline 18 & 8 & 6 \\ \hline H_1 &= & 18/5 + 0.8 \text{ ns} \\ &= & 3.6 + 0.8 \text{ ns} = 4.4 \text{ ns} \end{array}$$

28

Direct mapped cache:

Tag	Set	Block	
16	10	6	

This is no need of multiplexer in direct mapped cache.

 $H_2 = 16 / 5$ nsec = 3.2 nsec Difference = $H_1 - H_2$ = 4.4 - 3.2 = 1.2 nsec

12. (d)

So

2 memory references \rightarrow 1 Instruction 500 memory references \rightarrow ? instructions.

Number of instructions =
$$\frac{500}{2} = 250$$

 $\left[\frac{\# \text{ memory stalls}}{\# \text{ Instructions}}\right] = \left[\frac{\# \text{ misses } L_1}{\# \text{ Instructions}} \times \text{hit } L_2\right] + \left[\frac{\# \text{ misses } L_2}{\# \text{ Instructions}} \times \text{miss panality } L_2\right]$
 $= \left[\frac{100}{250} \times 20\right] + \left[\frac{50}{250} \times 100\right]$
 $= [20 + 8] = 28 \text{ cycles}$

13. (a)

Number of lines = $\frac{64K}{32} = 2^{11}$

Number of sets =
$$\frac{2^{11}}{4} = \frac{2^{11}}{2^2} = 2^9$$

-	- 32 bits -	*
Tag	SO	WO
18 bits	$\log_2 2^9 = 9$	log ₂ 32 = 5 bit

Tag memory size = $S \times P \times \#$ tag bits $= 2^9 \times 4 \times (18 + 1 + 1 + 2)$ $19 \times 12 \times 10$ hit

=
$$2^{3} \times 2^{2} \times 22$$
 bits
= $2^{10} \times 2 \times 22$ bits
= 44 K bits

14. (c)

f cycles/instruction = 4

Total # $f\mu$ -instruction = 400 × 4 = 1600

f bit for CAR = $[\log_2(1600)] = 11$ bit

	Branch	Eloa	Control	CM
	Conditions	Flag	Signal	Address
	5-bit	6-bi	t 8-bit	11-bit
# f bit for CDR	= 5 + 6 + 8	+ 11 =	= 30 bit	

15. (b)

Given, Decimal = -12Number is negative, so Sign bit = 1

Sign	Exponent	Significant
1-bit	3-bit	4-bit

- Now express 12 in binary form : 1100 • Normalized form = 1.100×2^3
- For 3-bit exponent field, a bias of $(2^{3-1} 1 = 3)$ is used. •
- Add the bias to the exponent = $3 + 3 = 6 = (110)_2$. • Hence result will be

1	110	1000	
Sign	Exponent	Significant	

Hence, option (b) is correct.

16. (d)

	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₇	<i>C</i> ₈	<i>C</i> ₉	<i>C</i> ₁₀	<i>C</i> ₁₁
S_4						I_1		I_2	I_3	I_3	I_4
S_3					I_1	I_2	I_2	I_3	I_4	I_4	
<i>S</i> ₂		I_1	I_1	I_1	I_2	I_3	I_3	I_4			
<i>S</i> ₁	I_1	I_2	I_2		I_3	I_4	I_4				

Number of task completed

Throughput = Number of task completed Total time taken to process the tasks

$$= \frac{4}{11}$$
 cycles

17. (b)

Given that 256 kW of memory used.

$$256 \text{ kW} = 2^8 \times 2^{10} \text{ W}$$

= 2^{18} W

Whenever 3 MSB bit is high, that is used for I/O port.

$$\begin{array}{c} \underbrace{A_{17}A_{16}A_{15}}_{3 \text{ MSB bit}} & \underbrace{A_{14} \dots \dots A_{3}A_{2}A_{1}A_{0}}_{15 \text{ LSB bit}} \\ \underbrace{1 1 1}_{2^{15}} & \underbrace{I_{15}}_{2^{15}} \end{array}$$

When $A_{17}A_{16}A_{15}$ is high then remaining 2¹⁵ combinations of memory reserved for I/O Port. So, $2^{15} = 32768$

18. (a)

Anti data dependency \rightarrow Write After Read Hazard (WAR) True data dependency \rightarrow Read After Write Hazard (RAW)

	WAR hazards		RAW hazards (Adjacent)
1.	$I_3 - I_1(R_1)$	1.	$I_3 - I_2(R_2)$
2.	$I_4 - I_3(R_2)$	2.	$I_4 - I_3(R_1)$
		З.	$I_5 - I_4(R_2)$

19. (a)

$$\begin{split} \mathsf{WAW} &= \ I_0(R_2) \to I_2(R_2), \ I_1(R_5) \to I_3(R_5) \\ \mathsf{WAR} &= \ I_0(R_5) \to I_1(R_5), \ I_0(R_5) \to I_3(R_5), \ I_2(R_5) \to I_3(R_5) \end{split}$$

20. (a)

I ₁ : 5000 – 5005
I ₂ : 5006 – 5010
I ₃ : 5011 – 5015
I ₄ : 5016 – 5021
I ₅ : 5022 – 5026
I ₆ : 5027 – 5031
I ₇ : 5032 – 5034
I ₈ : 5035 – 5039
I ₉ : 5040 – 5045
Return address (5032) is pushed onto the stack.

21. (b)

Execution time of programmed IO mode :

$$1 \sec \rightarrow 40 \text{ KB}$$
$$1B \rightarrow \frac{1}{40\text{ K}} = 25 \,\mu \sec$$
$$S = \frac{25}{2} = 12.5$$

 \Rightarrow

22. (b)

$$T_{\text{average read}} = 0.90 \times 45 + 0.10 \times 750$$

= 40.5 + 75 = 115.5 nsec

In write-through technique, CPU performs simultaneous WRITE operation in both cache memory and main memory. So,

$$T_{\text{average write}} = \text{Max}[T_{\text{updation}}(\text{cache}), T_{\text{updation}}(\text{main memory})] \\ = \text{Max}[45, 750] \\ = 750 \text{ nsec} \\ T_{\text{average}} = 0.75 (115.5) + 0.25 (750) \\ = 86.625 + 187.5 \\ = 274.125 \text{ nsec} \end{cases}$$

23. (c)

So

 I_2

 I_3

 I_4

IF

Total number of clock cycles needed for given program is 11.

ID

IF

OP

ID

IF

OP

OP

MA

OP

ID

WB

MA

OP

WB

MA

WB

- 27. (c)
- 28. (c)
- 29. (a)

Cache size = Block size =	64 kB = 2 ¹⁶ Cache line	size = 128	bytes = 2^7
Number of cache lines =	$\frac{2^{16}}{2^7} = 2^9$		
Number of sets =	$\frac{2^9}{2^3} = 2^6 =$	64	
	15	6	7
	Tag	Set	Block offset

Memory location : A B 0 1 C 2 3

101010110000000	111000	0100011
Tag	Set	Block offset

30. (d)

Each instruction of 24 bits = $\frac{24}{8} = 3$ B So, loop: $\leftarrow [R_0] + R_2[PC] i$ Dec R_1 i + 3B $R_2 \leftarrow [R_2] + 1$ i + 6BBranch > 0, offset i + 9BPC = [i + 12B]So value of X = [i + 12] - 12 = iSo value of X = [-12]